topic是消费分类存储的队列,可以按照消息类型来分topic存储。
replication是topic复制副本个数,用于解决数据丢失,防止leader topic宕机后,其他副本可以快代替。
broker是缓存代理,Kafka集群中的一台或多台服务器统称broker,用来保存producer发送的消息。Broker没有副本机制,一旦broker宕机,该broker的消息将都不可用。
partition是topic的物理分组,在创建topic的时候,可以指定partition 数量。每个partition是逻辑有序的,保证每个消息都是顺序插入的,而且每个消息的offset在不同partition的是唯一不同的
偏移量。kafka为每条在分区的消息保存一个偏移量offset,这也是消费者在分区的位置。比如一个偏移量是5的消费者,表示已经消费了从0-4偏移量的消息,下一个要消费的消息的偏移量是5。每次消息处理完后,要么主动提交offset,要么自动提交,把offset偏移到下一位,如处理offset=6消息。在kafka配置中,如果enable_auto_commit=True和auto_commit_interval_ms=xx,那表示每xx 毫秒自动提交偏移量
分组。是指在消费同一topic的不同consumer。每个consumer都有唯一的groupId,同一groupId 属于同一个group。不同groupId的consumer相互不影响。对于一个topic,同一个group的consumer数量不能超过 partition数量。比如,Topic A 有 16个partition,某一个group下有2个consumer,那2个consumer分别消费8个partition,而这个group的consumer数量最多不能超过16个。
kafka的配置主要分四类,分别是zookeeper、server、consumer、producer。其他的配置可以忽略。
zk的配置比较简单,也可以默认不改dataDir是zk存储节点配置的目录地址,clientPort是zk启动的端口,默认2181,maxClientCnxns是限制ip的连接此处,设置0表示无连接次数,一般情况根据业务部署情况,配置合理的值。42 broker
Kafka 集群包含一个或多个服务器,服务器节点称为broker。
broker存储topic的数据。如果某topic有N个partition,集群有N个broker,那么每个broker存储该topic的一个partition。
如果某topic有N个partition,集群有(N+M)个broker,那么其中有N个broker存储该topic的一个partition,剩下的M个broker不存储该topic的partition数据。
如果某topic有N个partition,集群中broker数目少于N个,那么一个broker存储该topic的一个或多个partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致Kafka集群数据不均衡。
43 Topic
每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)
类似于数据库的表名
43 Partition
topic中的数据分割为一个或多个partition。每个topic至少有一个partition。每个partition中的数据使用多个segment文件存储。partition中的数据是有序的,不同partition间的数据丢失了数据的顺序。如果topic有多个partition,消费数据时就不能保证数据的顺序。在需要严格保证消息的消费顺序的场景下,需要将partition数目设为1。
44 Producer
生产者即数据的发布者,该角色将消息发布到Kafka的topic中。broker接收到生产者发送的消息后,broker将该消息追加到当前用于追加数据的segment文件中。生产者发送的消息,存储到一个partition中,生产者也可以指定数据存储的partition。
45 Consumer
消费者可以从broker中读取数据。消费者可以消费多个topic中的数据。
46 Consumer Group
每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。
47 Leader
每个partition有多个副本,其中有且仅有一个作为Leader,Leader是当前负责数据的读写的partition。
48 Follower
Follower跟随Leader,所有写请求都通过Leader路由,数据变更会广播给所有Follower,Follower与Leader保持数据同步。如果Leader失效,则从Follower中选举出一个新的Leader。当Follower与Leader挂掉、卡住或者同步太慢,leader会把这个follower从“in sync replicas”(ISR)列表中删除,重新创建一个Follower。可以。
kafka副本设置大于节点数,虽然是高可用的,但是该topic在有broker宕机时,可能发生无法使用的情况。topic一旦使用又不能轻易删除重建,因此动态增加副本因子就成为最终的选择。
假设我们有3个kafkabroker分别broker0、broker1、broker2当我们创建的topic有3个分区partition时并且replication-factor为1,基本上一个broker上一个分区。当一个broker宕机了,该topic就无法使用了。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)