随着互联网的快速普及与网络终端的多元化,我们的生活从现实生活逐渐走向线下线上结合的二元生活。在网络世界中,我们从事的一切网络行为,包括浏览网页、搜索信息、网络购物等,都被网络服务商抓取与挖掘,形成 “数据痕迹”,堪称“大数据”(Big data)。被誉为“大数据商业应用第一人”的维克托?迈尔?舍恩伯格在《大数据时代》前瞻性地指出,大数据带来的信息风暴正在变革我们的生活、工作和思维,大数据开启了一次重大的时代转型。本文以中粮集团2014“年味儿”广告为案例,看大数据时代广告思维、商业传播、营销方式的变革。
一、大数据时代广告实践:以中粮年味儿广告为例
2014年马年春节来临之际,中粮集团发起一场以“中粮,让年更有味道”为主题的大型品牌营销活动。以“年味儿”为核心,以北京地铁四号线西直门至西单站六站链通包站为宣传阵地,以“我买网”为营销平台,通过整合媒体渠道,最终实现“我买网”电商同比销售翻3倍的直接利益。
1.广告思维:过年语境
人与人之间传播的目的是交流意义,换句话说即交流精神内容[1]。这种精神交流,不能完全依靠语言符号,有相当一部分来自于语境。如何营造语境?简单的说就是用情感讲故事,引发消费者共鸣。根据广告原理,人的潜意识是受情感驱动的,而非逻辑,这些情感包括与生俱来的娱乐、亲情、愤怒、好奇、情欲等。广告思维即商品营销策略和动机需要转化成用户情感上的概念和故事。添置年货、吃团圆饭、放鞭炮、走亲访友拜大年曾是许多人童年记忆中年味儿。而今,人们生活在忙忙碌碌中,年过得越来越没有“年味儿”了。中粮集团在2013年12月30日起至2014年1月7日,创造了一个让整个市场都能熟悉和接受的语境——“过年”。从西直门至西单的地铁站里红彤彤的剪纸、一家团圆的图画、满眼的好年货,年被符号化。这些符号打的是亲情牌,传达忙碌人儿时记忆中的年味儿,唤起了大家心底对春节和团圆的期盼。“曾以为逃离了家是自由,后来才发觉逃离了家,我一无所有。中粮,让年更有味道”、“再好的山珍海味,都比不上妈妈亲手做的白米饭。福临门,让年更有味道!”广告语唤起了“家”味儿、“人情”味儿。过年的语境戳痛了北漂族的心。
2.传播思维:线下线上结合
线下终端以平面媒体、电视媒体、户外广告等传统广告形式以主。中粮“年味儿”广告以马年新年倒计时30天为时间节点,在北京地铁四号线启航,采用环环相扣、逐站链通的模式,逐站链通西直门、新街口、平安里、西四、灵境胡同以及西单站。福临门、家佳康、长城、蒙牛、中茶等中粮旗下知名子品牌,与中粮集团母品牌,借“中粮年味儿专线”齐齐亮相,向往来乘客传递着浓浓的年味儿。铁链通包站广告模式吸引了受众关注,增强了公众的冲击力,实现了广告效应乘积化。线下活动还包括聚焦除夕未归人,爱心年货礼包寄送、赞助驻京外交使节年夜饭、全国数百家线下零售终端促销联动、好年货进驻合作企业销售等活动。线上传播即通过“年味儿”,“中粮味道”微博、微信等网络传播方式,让受众和网络形成互动。在地铁上刊之日同步推出@中粮味道活动微博/微信,参与众多年味儿活动和话题探讨。线下二维码,寻找草根代言。“年味儿吃货达人”互动游戏,中粮好年货礼包、“我买网”购物红包等大奖回馈消费者。中粮年味儿广告活动覆盖3亿人。线上平台与线下平台各有所长。中粮“年味儿”广告形成了线上线下补充、多元的传播形式,为中粮网络营销提供了人气基础。
3.营销思维:自建网络营销平台
中粮集团的成功还在于自建了网络营销平台“我买网”,建立了“5C”营销模型:Catch、Conncet、Close、Continue和Campaign。“5C”营销模型运用的是大数据,即利用数据和自己的洞察力,了解消费者喜好,然后提供个性化服务。
“5C”营销模型是从Catch开始的,即从几十亿的流量中找到真正的价值流量,借助搜索引擎、DSP投放、社交媒体等精准营销手段捕获目标人群,引导到自己的平台(catch);建立品牌官网为核心的互动平台,可以按照品牌商的意志提供官方内容(Conncet);完成消费购物的体验闭环,尤其是下单、配送、售后服务一系列客户体验(close);通过对会员系统、积分系统持续升级等手段提升重复购买和用户忠诚度(Continue);依靠一波一波的营销计划滚雪球式驱动,让客户群和销售额越滚越大(Campaign)[2]。这种集产品展示、促销、购买、物流配送等于一体的推广模式,提供了“眼见即所得”的快捷便利购物体验,也为中粮品牌整合提供了有力的支撑。
中粮“年味儿”广告通过过年语境的广告思维、线上线下结合的传播思维、自建网络营销平台的互联网思维,最终实现了我买网电商同比销售翻3倍的直接利益。中粮“年味儿”传播方式和营销策略是新媒介时代的典范。
二、大数据时代的广告策略
大数据为广告带来了商机。根据2014年4月17日全国工商系统会议的消息,2013年我国网络广告发展较快,效果也较为显著,网商经营额同比增长46.1%,市场规模达到1100亿元。如何在大数据时代实现广告效果最大化?
1.传播策略
(1)以受众为本位。所谓受众本位,即从受众角度出发,通过分析受众的媒介接触动机及这些接触满足了他们的什么需求,来考察大众传播给人们带来的心理和行为上的效用。传统广告是在围绕“媒体”方的“时间”(广告时段)与“空间”(版面、广告位置)进行商业交易。这种“媒体本位”的传播方式,以传播为目的、观众被强制观看,到达率差,传播效果无法量化,广告不能有效覆盖目标群体。随着大数据广告时代的来临,广告业会迎来由“媒体本位”到“受众本位”的转换。特别RTB广告的兴起,使得广告产业的核心开始围绕“人”(即受众)展开交易。RTB广告是在每个广告展示曝光的基础上进行竞价。广告售卖的不仅仅是传统意义上的广告位了,而是访问这个广告位的具体用户,买方明确人的标签属性,卖方提供与之对应的人的点击流量。
(2)社交化网络传播平台。信息技术的进步使网络环境下“用户创造内容”成为可能,不少企业看到了利用社会化媒体进行营销的力量。电影《小时代》《致我们终将逝去的青春》的成功得益于良好的社会化媒体营销策略,黄太吉煎饼果子、马佳佳powerful网店的成功少不了社会化媒体的助力。在传播手段上,社交化网络传播平台主要包括电子邮件、博客、播客、视频分享、即时通讯、网络社区等多种类型的网络应用的集合,同时涵盖了文字、视频、音频等媒介手段,将多种媒介融合在一起。企业通过不同的表现形式将广告信息通过人际传播的方式传达给受众,网民通过分享、评价、讨论等方式参与,实现广告信息的病毒式传播。社交化网络传播平台以“人人均可参与”为主要特征,受众不再是被动接受信息,而是能够主动掌握、控制信息,甚至参与信息的传播。根据参与程度不同,社交化网络传播包括“强关系”、“弱关系”连接。基于媒体属性的微博,其特征偏向于社会化信息网络,其聚合的群组偏重于弱关系连接,可实现尽可能地传递信息、尽可能地实现公开的互动,促进品牌推广。微博自诞生以来,已成为广告商家的必争之地。作为一种分享和交流平台,微博能表达出每时每刻的思想和最新动态。它是商家或个人发现并满足用户的各类需求的一种工具。相对于微博,微信的服务性更强,其特征偏向于社会化关系网络,其聚合的群组偏重于强关系连接,是典型的熟人模式,同时又开始于公众账号、朋友圈分享等开始向半熟人发展。也可以通过用户订阅自己所需的信息,商家通过提供用户需要的信息,推广自己的产品,从而实现点对点的传播。社交化网络传播实质是一种人际传播。人际传播在本质上来说是个人之间相互交换精神内容的活动,精神内容的交互程度很大程度取决于符号载体的运用。符号载体可以是能传递信息的手段和渠道。而在大众传播过程中,每个接收者都扮演着译码、释码和编码的角色。传播者既是传者又是受众者,在一定程度上具有连接性和交织性。在新媒介时代,广告传播应该充分利用网络优势,以受众为本位、发挥社交媒体功能。
2.营销策略:广告精准营销
2005年9月世界级营销大师菲利普?科特勒最早指出了一个营销传播的新趋势——精准营销。所谓广告精准营销就是依托现代信息技术手段,基于用户属性和用户行为精准判断和精准定位的基础上,建立个性化的服务体系,实现企业广告精准地传达到目标消费者的目的。如何建立广告精准营销?维克托?迈尔?舍恩伯格在《大数据时代》中认为大数据的核心就是预测。借助cookies的跟踪和庞大的数据库系统的储存,记录下来大量的姓名和信息,运用大数据技术搜集、分析网络用户的网上“踪迹”,精准地发现目标消费者甚或其消费情境,预测消费者行为。在发广告的时候,不是针对每个人,而是针对预测的目标客户营销。例如Google借助ADsense,通过分析消费者的搜索习惯,进行数据挖掘,然后能够寻找到更适合消费者使用的广告。也就是说广告营销者可以借助于网络技术深入洞察消费者的兴趣和需求,把营销信息制作成消费者“想要的信息”,借助现代化信息技术精确地传递给目标消费者了[3]。
三、结 语
大数据时代带来了信息传播方式的变化,广告的精准营销倍受关注。中粮“年味儿”广告掀起了精准营销的小波澜,它不仅给广告主带来了更满意的效益,也给顾客创造了个性化的传播体验。目前我国广告精准营销尚处于起步阶段,但有着无限的发展潜力。在大数据时代,要达到广告精准营销,在传播领域里,力求实现以受众为核心建立互动的社交化网络传播。在营销领域,依托现代信息技术手段,基于用户属性和用户行为精准判断和精准定位的基础上,建立个性化的服务体系,实现企业广告精准地传达到目标消费者的目的。
以上是小编为大家分享的关于大数据时代广告精准营销及传播策略的相关内容,更多信息可以关注环球青藤分享更多干货
可以用360点睛、搜狗联盟都可以的。更多的联盟广告,你可以去一些小说站点、电影网站等方面你看到广告点击右下角这块就可以找到了地址了。
现在目前优秀的联盟广告比较赚钱,如果你的网站流量够大可以做淘宝联盟广告
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)