大数据精准营销方法如下:
一、建立用户画像
根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型,包括用户固定特征、兴趣特征、社会特征、消费特征、动态特征等多个层面。然后从已知的数据出发,挖掘和寻找线索,分析用户需求,进一步开发市场。
传统时代的营销,以产品为中心,但是产品是否真的触达到最有需求的用户面前,谁也不能保证,而通过大数据建立用户画像,对每个消费者进行个性化匹配,一对一营销,甚至精确算清楚成交转化率,能够大大提高投资回报比。
二、用户分群分析
在大数据分析当中,描述分析是最基本的分析统计方法,其次还涉及到一些数据算法模型等,如响应率分析模型,客户倾向性模型等,帮助企业来更有针对性地进行营销推广。
大数据分析所能带来的价值,最大的价值是在预测和推荐上,依赖消费者的行为来分析消费者,将更加了解消费者,也能实现自身产品营销的最大化。
三、制定营销策略
有了用户画像,进行了相应的用户分群分析之后,企业能够更加清楚地了解到用户的需求,根据用户需求来推出新的营销策略。再根据营销策略推出之后的客户反响,来进一步验证策略是否正确,进行进一步的优化调整。
大数据时代市场营销策略1、利用大数据改进企业广告投放策略
广告圈里一句名言:我知道我的广告浪费了一半,但我不知道浪费了哪一半。当前,越来越多的企业在大数据思维指导下进行广告投放,广告能通过对人群的定向, 投放给准确的目标顾客。特别是互联网广告现在能够做到根据不同的人向其发布最适合其的广告,同时谁看了广告,看了多少次广告,都可以通过数据化的形式来了解、监测, 以使得企业更好地评测广告效果,从而也使得企业的广告投放策略更加有效。
2、基于大数据的精准推广策略
没有目标消费者的精准定位,盲目推广,是很多企业开展营销推广没有效果或者效果甚微的主要原因。大数据时代一个重要的特点是,能够实时全面地收集、分析消费者的相关信息数据,从而根据其不同的偏好、兴趣以及购买习惯等特征有针对性、准确地向他们推销最合适他们的产品或服务。另一方面,可以通过适时、动态地更新、丰富消费者的数据信息, 并利用数据挖掘等技术及早预测消费者下一步或更深层次的需求,进而进一步加大推广力度,最终达到极大增加企业利润的目标。
3、规模个性化产品策略的实施
传统市场营销产品策略主要是,同样包装同等质量的产品卖给所有的该企业客户,或同一个品牌,若干不同包装不同质量层次的产品卖给若干相对大群客户,这使得很多企业的很多产品越来越失去对消费者的吸引力, 越来越不能满足消费者的个性化需求。
近年来,随着科技和互联网的发展,社会的生产制造向生产“智”造转变,同时大数据通过相关性分析,将客户和产品进行有机串联,对用户的产品偏好,客户的关系偏好进行个性化定位,进而反馈给企业的品牌、产品研发部门,并推出与消费者个性相匹配的产品。
4、大数据使得营销渠道效能的潜力得以充分挖掘
以前的市场营销的.渠道大多采取代理制, 或者是购销制, 企业与代理商或经销商之间存在一种利益博弈关系,相互之间的信息常常是不共享的, 也经常会发生利益冲突。在大数据环境下, 企业只有与各方合作者一起建立起大数据营销系统平台,才能集中体现大数据、物联网、云计算、移动电子商务的优势, 从而不断拓展企业营销渠道的外延与内涵。
通过营销渠道各方协调一致增强消费者对产品品牌、服务的良好体验,进而引发顾客更加强烈的购买欲,促进客户与企业品牌的亲合度更加紧密, 提升企业的利润空间。
5、利用企业大数据集成系统制定科学的价格体系策略
现在,很多企业都构建了基于大数据技术的大数据营销平台,实现了海量、不同类型的数据的收集, 并跨越多种不同的系统,比如,不同的渠道平台(网络销售平台,以及实体批发、零售平台)不同的客户需求不同的细分市场以及不同的但可以区隔的市场区域。
这样就可以帮助企业迅速搜集消费者的海量数据,分析洞察和预测消费者的偏好,消费者价格接受度分析各种渠道形式的测试销售数据以及消费者对企业所规划的各种产品组合的价格段的反应。使之能够利用大数据技术以了解客户行为和反馈,深刻理解客户的需求、关注客户行为,进而高效分析信息并做出预测,不断调整产品的功能方向,验证产品的商业价值,制定科学的价格策略。
大数据市场营销 有何诀窍了解一些更智慧的大数据营销示例,有助于阐明营销人员应如何使用非传统数据,从分析和创新的角度进行思考。
1. 衡量社交媒体影响力
公司可以采用定制分析解决方案或社交网络分析,来衡量社交媒体的影响力。
2. 识别您的品牌推广人员
识别主要的影响者,并使用这些个人开展积极的营销活动。寻找主要的影响者,不只可以通过传统交易(最近购买、客户服务呼叫),还可以通过社交媒体。
3. 将大数据见解转变为切实可行的营销战术
借助不同学科团队,将大数据见解转换为切实可行的营销战术。最大的成功是工作速度快且具有很强迭代的团队,业务、IT和分析专家快速评审实际结果,重新校准分析,调整假设,然后测试结果。
4. 创建客户购买预测
将历史行为数据用于一个定义的目标,作为针对不同类别产品的行为指标。例如,测试一项公用事业服务的付款历史记录或升级可能性,作为一个娱乐产品或新兴信贷产品的行为指标。不断测试是取得成功的有力保障。
5. 了解不同营销渠道的真正价值
组合来自传统媒体和社交媒体站点的销售数据,创建一个模型,突出传统媒体与反映在社交媒体上的活动(如呼叫中心交互)的影响力。不佳的客户体验是比传统媒体活动更强大的销售驱动力。改进客户服务背后的开销,可以比投资广告更有效地增加收入。
6. 通过邮编瞄准销售机会
与其让销售代表超负荷工作,分析海量数据和复杂的模型,不如创建强大的销售工具,用简单、可视的界面,通过邮编瞄准新的潜在客户。这是一个业经证明的增加销售的战术。
充分利用大数据获得见解极有可能让企业从众多竞争对手中脱颖而出。由于这一转变仍处于起步阶段,迄今很少有大数据见解转变为营销优势,因此大数据营销的早期加入者具有明显的优势。考虑以下大数据营销示例,了解其他早期采用企业如何从大数据中寻求优势:
1. 下一代客户重新定位
随着大数据分析变得日益复杂,营销人员需要找到更好的途径来重新定位客户。例如,试想根据在线查看的项目而不是点击率来重新定位。这一战术及其他战术将能够提供比当前使用的重新定位方法更加个性化的方案。
2. 使用热图(Heat Map)技术追踪店内客户偏好
使用部署了热图技术的内部摄像系统来查看店内客户流量,就像是网站使用技术来注册在线活动一样。这一离线流量信息可与在线数据进行对比,告诉零售商产品在线与离线的执行情况,以便调整营销计划。
3. 利用地理空间数据与客户进行沟通
使用地理空间数据来准备有针对性的报价,并推动在线客户前往店铺。无线运营商采用有针对性的营销活动增加了每位用户的收入,并结合了离线和在线营销工作。
4. 分析社交媒体以增加收入
使用社交网络分析来识别和影响有影响力的客户。无线运营商已发现,通过实施社交分析,他们能够将其前10%有影响力的客户所影响的收入从35%增加到80%。
5. 注重转换
营销人员应以转换语言来交谈,并特别关注这一点。“拥有最高转换的线索来源是什么?”“哪类内容能够激发最强的品牌主张?”“哪些渠道持有最高的转换率?”使用大数据来通知和推动全方位的转换。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)