大数据精准营销的价值和方法

大数据精准营销的价值和方法,第1张

数据精准营销的价值和方法

大数据营销价值:

随着全球的信息总量呈现爆炸式增长,移动互联网、可选渠道和设备增加以及不断变化的消费者特征,同时大数据技术的更新日益。大数据营销依托多平台的数据采集及大数据技术的分析及预测能力,使企业的营销更加精准,为企业带来更高的投资回报率。无论是线上还是线下大数据营销的核心在于在合适的时间,基于你对用户的了解,把你希望推送的东西通过合适的载体,以合适的方式,推送给合适的人。

大数据营销关键问题:问题1:怎么才能准确知道Who?Where?Do What? How Do?

大数据营销首先要解决的是数据汇聚的问题。通过打通用户在多个渠道上的行为数据,构建对用户行为和用户数据的深入洞察,一方面实时监控各渠道的用户行为特征,运营和营销的效果,进行优化;另一方面集中用户的数据,便于后续的深入挖掘工作,实现以用户为中心的数据汇聚,提升用户数据价值,实现用户交互的精准识别和多渠道数据打通,为用户提供更准确的服务和营销。

问题2:渠道及交叉渠道组合方式如何选择?

当营销预算不够的时候,如何在搜索和其他的渠道间进行营销预算的分配?是选择电子商务最优搜索渠道还是选择跨渠道组合营销呢?跨渠道营销预算如何进行排列组合?

问题3:如何通过个性化营销让企业离用户更近一点?

营销方式从海量广告过度到一对一以用户体验为中心的精准营销,一对一精准营销实际上是对于任何一个互联网用户在那一刻,在那一个渠道以一个独特的价格,推送一个独特的广告创意,效果是怎么样的。围绕用户、业务场景、触点、营销推送内容/活动推荐,并且基于跨渠道触发式的营销能力,在注重用户体验同时达到最佳的营销效果,并且可对营销进行跟踪,从而不断优化营销策略。

问题4:如何实现基于大数据营销的即时营销?

企业希望通过实时分析来获取竞争优势。精准营销也要求在活动的同时我们就能得到数据,立即优化营销效果。

大数据营销系统组成:

基于大数据的精准营销过程分为:采集和处理数据、建模分析数据、解读数据这么三个大层面。通过对客户特征、产品特征、消费行为特征数据的采集和处理,可以进行多维度的客户消费特征分析、产品策略分析和销售策略指导分析。通过准确把握客户需求、增加客户互动的方式推动营销策略的策划和执行。

网舟科技大数据营销项目的解决方案主体为:数据整合营销平台

营销管理平台中心有一个通用的工作流引擎,以及创新生动的用户界面。它具有高度自动化的特点,基于角色的协作,工作流工具使营销上很容易定义流程规划和管理预算、资源和内容,细分客户,定义规则和机制,创建和重建模板,执行活动,捕捉反应,定义领导流程和结果分析。营销商根据需求动态的格式化内容协调所有营销过程与跨越多渠道的用户交互,而视觉框架使这一切变得更直观。

大数据精准营销实现方式:

通过一个表达式构建器、原始SQL、或通过预定的过滤器进行构造。即可以基于一个无限数量的隐式或显式条件下,利用底层营销数据:包括历史客户交易、人口统计、模型评分、营销历史以及浏览行为等实时变量,进行细分和决策规则的配置。支持Offer(针对不同特点客户所要提供的营销内容、素材等的供给物)与渠道(网站、手机应用、邮件短信等)的关联配置。数据营销后台可对各触点的推送offer中的推送规则、推送内容进行定义,还可实现多渠道、多波次的营销定义,并负责精准营销的推荐实施。

以上是小编为大家分享的关于大数据精准营销的价值和方法的相关内容,更多信息可以关注环球青藤分享更多干货

大数据时代市场营销策略

1、利用大数据改进企业广告投放策略

广告圈里一句名言:我知道我的广告浪费了一半,但我不知道浪费了哪一半。当前,越来越多的企业在大数据思维指导下进行广告投放,广告能通过对人群的定向, 投放给准确的目标顾客。特别是互联网广告现在能够做到根据不同的人向其发布最适合其的广告,同时谁看了广告,看了多少次广告,都可以通过数据化的形式来了解、监测, 以使得企业更好地评测广告效果,从而也使得企业的广告投放策略更加有效。

2、基于大数据的精准推广策略

没有目标消费者的精准定位,盲目推广,是很多企业开展营销推广没有效果或者效果甚微的主要原因。大数据时代一个重要的特点是,能够实时全面地收集、分析消费者的相关信息数据,从而根据其不同的偏好、兴趣以及购买习惯等特征有针对性、准确地向他们推销最合适他们的产品或服务。另一方面,可以通过适时、动态地更新、丰富消费者的数据信息, 并利用数据挖掘等技术及早预测消费者下一步或更深层次的需求,进而进一步加大推广力度,最终达到极大增加企业利润的目标。

3、规模个性化产品策略的实施

传统市场营销产品策略主要是,同样包装同等质量的产品卖给所有的该企业客户,或同一个品牌,若干不同包装不同质量层次的产品卖给若干相对大群客户,这使得很多企业的很多产品越来越失去对消费者的吸引力, 越来越不能满足消费者的个性化需求。

近年来,随着科技和互联网的发展,社会的生产制造向生产“智”造转变,同时大数据通过相关性分析,将客户和产品进行有机串联,对用户的产品偏好,客户的关系偏好进行个性化定位,进而反馈给企业的品牌、产品研发部门,并推出与消费者个性相匹配的产品。

4、大数据使得营销渠道效能的潜力得以充分挖掘

以前的市场营销的.渠道大多采取代理制, 或者是购销制, 企业与代理商或经销商之间存在一种利益博弈关系,相互之间的信息常常是不共享的, 也经常会发生利益冲突。在大数据环境下, 企业只有与各方合作者一起建立起大数据营销系统平台,才能集中体现大数据、物联网、云计算、移动电子商务的优势, 从而不断拓展企业营销渠道的外延与内涵。

通过营销渠道各方协调一致增强消费者对产品品牌、服务的良好体验,进而引发顾客更加强烈的购买欲,促进客户与企业品牌的亲合度更加紧密, 提升企业的利润空间。

5、利用企业大数据集成系统制定科学的价格体系策略

现在,很多企业都构建了基于大数据技术的大数据营销平台,实现了海量、不同类型的数据的收集, 并跨越多种不同的系统,比如,不同的渠道平台(网络销售平台,以及实体批发、零售平台)不同的客户需求不同的细分市场以及不同的但可以区隔的市场区域。

这样就可以帮助企业迅速搜集消费者的海量数据,分析洞察和预测消费者的偏好,消费者价格接受度分析各种渠道形式的测试销售数据以及消费者对企业所规划的各种产品组合的价格段的反应。使之能够利用大数据技术以了解客户行为和反馈,深刻理解客户的需求、关注客户行为,进而高效分析信息并做出预测,不断调整产品的功能方向,验证产品的商业价值,制定科学的价格策略。

大数据精准营销方法如下:

一、建立用户画像

根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型,包括用户固定特征、兴趣特征、社会特征、消费特征、动态特征等多个层面。然后从已知的数据出发,挖掘和寻找线索,分析用户需求,进一步开发市场。

传统时代的营销,以产品为中心,但是产品是否真的触达到最有需求的用户面前,谁也不能保证,而通过大数据建立用户画像,对每个消费者进行个性化匹配,一对一营销,甚至精确算清楚成交转化率,能够大大提高投资回报比。

二、用户分群分析

在大数据分析当中,描述分析是最基本的分析统计方法,其次还涉及到一些数据算法模型等,如响应率分析模型,客户倾向性模型等,帮助企业来更有针对性地进行营销推广。

大数据分析所能带来的价值,最大的价值是在预测和推荐上,依赖消费者的行为来分析消费者,将更加了解消费者,也能实现自身产品营销的最大化。

三、制定营销策略

有了用户画像,进行了相应的用户分群分析之后,企业能够更加清楚地了解到用户的需求,根据用户需求来推出新的营销策略。再根据营销策略推出之后的客户反响,来进一步验证策略是否正确,进行进一步的优化调整。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/8682007.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-19
下一篇 2023-04-19

发表评论

登录后才能评论

评论列表(0条)

保存