如何精准掌握营销数据,方法如下:
1、首先必须明确产品的目标群体。
定位与产品自身相匹配的消费群体,是分析消费者购买习惯和消费需求的前提,让大数据分析有用武之地。互联网时代下,人们可接触到的事物种类众多,每个人的喜好不同,个性化程度高,极具多样性。
因此在寻找目标群体的过程中,要立足于各行业沉淀的数据,根据不同的标准来划分消费群体,建立用户信息的数据库,从中寻找到目标用户。
2、需要掌握运用大数据分析用户需求的技术。
大数据对用户使用各种应用而产生的每一条数据都加以记录,营销者可以用过分析这些数据来获取用户需求,甚至挖掘出用户也没有意识到的潜在需求。以移动游戏应用的推广为例,不同游戏玩家之间的喜好是有天差地别的,没有经过数据分析玩家喜好和使用习惯而投放的广告,往往都成为无用功。
而通过分析用户数据,获取各种信息来进行精准营销,能大大提高下载率和延长留存时间。因此,提升运用大数据分析用户需求的技术,也成为许多主流广告平台的工作重点之一。
3、注意广告创意与数据的相结合。
现代人更喜爱个性的、新颖的广告创意,对广告的审美要求也上升到了一个新的高度。而简单粗暴、缺乏创意的广告早已不适应时代的进步,这使得营销者们对广告创意越来越重视。
依照分析数据得出的消费需求与让人耳目一新的创意相结合,理性的数据加上感性的艺术,才能创造出点击率高,推广效果好的广告。在互联网时代,精准营销势在必行,这需要企业和营销者更好地定位目标人群,掌握分析大数据的技术,结合创意来进行精准营销。
大数据营销等同于精准营销,或是精准营销是大数据营销的一个核心方向和价值体现。然而,数据本身不会产生价值。为此,我们要把数据组织成数据资源体系,再对数据进行层次、类别等方面的划分。在此基础上,通过分析数据资源和相关部门的业务对接程度,以此发挥数据资源体系在管理、决策、监测及评价等方面的作用,从而产生大数据的大价值,真正实现了从数据到知识的转变,为领导决策提供服务依据本例根据工作实践。本例以三个工作实例,展示如何通过对数据分析进行对客户的精准营销。工具/原料大数据营销大数据营销三个案例分析案例一:笔者在银行工作,通过对储户身份z信息进行海量剖析,发现一个有趣的现象,即购买理财产品的客户以40-50岁的女性居多。根据这一信息,有经验的理财经理通过身份z信息即能准确的分析出支行有哪些符合条件的客户,迅速的对新推出的理财产品进行电话营销,做到不出门即可实现销售,较快的完成了销售任务。而另一些更具创新性的理财经理,通过身份z信息,在情人节期间组织了网点沙龙客户邀约活动,对符合18-30岁、30-45岁这两个年龄段的男性客户进行了电话营销,通过赠送爱人鲜花、化妆品以及高价值的礼品进行金融产品营销,较好的引起男性客户的兴趣,有力的拉升了业绩增长。这些数据分析手段就能够做到个性化营销和定位,加强对客户的认知,为客户找到价值,从而带动销量。案例二:在与供电部门合作期间,供电部门提供了一条信息,市里每一天上网高峰期主要集中在中午12点之后和晚上的12点之前。供电部门认为,出现这种“怪现象”的原因是因为现在的人们普遍睡觉前都会有上网的习惯。这条信息当时很多人没有注意,似乎与银行搭不上关系,但我们市场经营部门的一个年轻的大学生针对人们这种“强迫症”,通过手机银行与商家合作,在晚上12点进行促销秒杀活动,即推动了手机银行业务量的提升,同时也带动商家销量的倍增,实现了双赢。案例三:在为企业代发工资数据中,我们曾发现一个现象,即一般企业员工代发帐户每月都会沉淀一定的余额,金额不大,1000元也有,几千的也有,长期不动的也有,活期利率很低,但是这些客户的帐户金额又达不到理财产品的起售金额,这些客户工资用了也就用了,成了“月光族”,没有理财理念。如何通过分析这些数据信息直接进行客源组织,为这些具有相同需求的人群量身定做金融服务,并享受”一客(群)一策“的定制服务,我们进行专题研究。最终,我们在零存整取、基金定投和适时到帐理财产品上进行了产品打包宣传,同步利用xyk宣传,几场现场专题沙龙下来,引起了不少企业员工的注意和兴趣,着实为这些收入不高的人群提供了一条实实在在的理财渠道。这三个小故事就是对历史数据进行挖掘的结果,反映的是数据层面的规律,它通过对大量的数据系统中提取、整合有价值的数据,从而实现从数据到知识、从信息到知识、从知识到利润的转化。简单来说就是:5个合适,在合适的时间、合适的地点、将合适的产品以合适的方式提供给合适的人。5具体来讲,当我们通过对完成数据分析之后,找出相同的规律,当然还有一些个性化数据体现,为此具体的应用场景需要根据企业、业务的具体情况进行精准营销策划、设计。概括来讲,我们需要以下三个步骤:第一步:数据采集,了解用户,通过收集用户所有的数据,主要包括静态信息数据、动态信息数据两大类,静态数据就是用户相对稳定的信息,如性别、地域、职业、消费等级等,动态数据就是用户不停变化的行为信息,如消费习惯、购买行为等第二步:分析这些数据,给客户画像,画像代表客户对营销内容有兴趣、偏好、需求等,分析推算客户的兴趣程度、需求程度、购买概率等第三步,也就是最后一步,将这些画面综合起来,拼成一张较为完整的图,这样我们对客户就有了一个大概的了解。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)