大数据营销是指通过互联网采集大量的行为数据,首先帮助广告主找出目标受众,以此对广告投放的内容、时间、形式等进行预判与调配,并最终完成广告投放的营销过程。
大数据营销,随着数字生活空间的普及,全球的信息总量正呈现爆炸式增长。基于这个趋势之上的,是大数据、云计算等新概念和新范式的广泛兴起,它们无疑正引领着新一轮的互联网风潮。大数据营销是指通过互联网采集大量的行为数据,首先帮助广告主找出目标受众,以此对广告投放的内容、时间、形式等进行预判与调配,并最终完成广告投放的营销过程。
首先,“大数据营销”是伴随互联网平台同步诞生的一种营销模式,在早期的互联网时代,很多平台都是刚刚兴起,本身没有什么名气,自然也没有流量,但是平台想要吸引用户消费,或者吸引商家入驻,甚至是吸引广告主投广告,活跃度都是一个硬性标准。
为了让平台保持高流量的活跃度,平台方就会花钱在各种渠道打广告,这种广告效应在早期会给平台带来可观的流量,但是随着平台的不断壮大,平台本身的偏好特点也会更加显著。
例如早期的网络平台比较偏重“综合服务”的特点,让用户在使用平台的时候能够感受到“应有尽有”的服务,但是伴随着越来越多的互联网公司创立新平台,个性化和专属性就会成为新时代互联网平台的竞争力,比如卖车的平台专注汽车交易,外卖平台专注餐饮跑腿服务,房产平台专注房屋租售服务,这就是新的互联网平台,专属标签更明显的标志。
但是在专属平台越来越成熟的同时,这个平台本身的专注度越高,它本身的用户群体就会因为受到局限而变少,这样的话,跟综合服务类的平台相比,新平台的活跃度就会很快到达瓶颈。
到了这个阶段,平台想要再次获得竞争力,就不能单单地依赖传统的“流量效益”,而是要更加侧重转化,也就是对平台上的商家和广告主来说,从以前的纯粹看重大数据,到看重营销的精准转化,这就是“大数据营销”的概念来源,我们也可以把它叫做“精准营销”。
这两年大数据行业新提出了一个概念,叫大数据运营,所谓的BigData Operation,目前在各个行业中均处在蓬勃发展的阶段,就笔者来看,BDO代表了一种大数据的未来方向,以笔者所从事的网络游戏行业来看,具有比较大的发展空间,下面科多大数据来给大家做个简单介绍。
1、前世今生从大数据进入游戏行业以来,大概经历了几个阶段
数据仓库和数据集成阶段,以mysql、oracle 为代表的关系型数据库作为数据集成工具,以手动sql查询作为主要的产出报表等BI、可视化工具阶段,以水晶报表、BO、自主开发系统(例如php+mysql)等可视化数据平台为主要产出数据挖掘建模,数据库营销阶段,该阶段主要利用SAS+Oracle,R+Hadoop等软件系统进行深度数据挖掘建模,主要是从传统数据挖掘的方法论(如用户细分、流失预警、商品推荐等)出发,去套用游戏的各个模块和运营活动,产出多为模型、分析报告、业务建议等
大数据运营(BDO)阶段,同样基于数据库营销理论和传统数据挖掘方法论,但同数据挖掘阶段的根本性区别在于,BDO阶段更依赖于本身游戏运营的需求和痛点,从游戏运营的各个环节上,寻求大数据的介入,然后才是考虑需要大数据的××技术,××模型,最终的产出其实是运营的活动、版本的更新等等,大数据以一种潜移默化的方式去影响和引导运营、研发的决策。
2、BDO的主要特点大数据运营(BDO),和之前的数据挖掘不同,着力点并不在大数据,而是运营上,大数据仅仅是工具和途径:
相比于传统的数据挖掘和分析,BDO所强调的是以业务为主线和出发点,大数据部门并不仅是在外部运行的所谓的“支持部门”,而更多的是和业务紧密联系在一起的“半业务部门”,共同推进业务目标的实现。
3、游戏行业的实践
具体到笔者所在的游戏行业,大数据运营(BDO)主要实现方式:
其中基础支撑和可视化监控,是常见的基本大数据应用,
运营活动支撑,包含了常规的活动效果分析和反馈、数据库营销,还有活动的策划建议(从运营的角度和数据的验证上看活动该如何做,目前的活动都是需要大数据分析师一起讨论同意后才上线);
游戏设计支撑,包含了常规的版本和功能的效果分析、反馈(大数据分析师指出问题所在,并给出改进建议),而且在游戏的研发和持续更新阶段,对于功能的策划和数值的配平等,均依据大数据分析师给出的数据参考。
从这里看出,大数据运营(BDO)不仅包含传统的数据收集和可视化、数据库营销等,而且逐渐的脱离了最初的数据驱动原则,而是以企业整体目标(比如游戏KPI的完成)为导向,以运营为驱动,涵盖运营的各个方面,以大数据为重要依据,以大数据分析结果为评判标准,构建企业的“数据运营”的文化。
供参考。
数据市场销售
该方式关键就是指将初始数据开展市场销售,或是授权第三方应用已有数据。该方式在中国因为多种多样缘故进度迟缓,海外关键在金融业用以个人信用分析等。
科学研究咨询分析
该方式就是指企业(如顾问公司)根据已有数据、公布数据或第三方数据开展分析,得到行业分析报告或是一些特殊方位的汇报,并将汇报开展出售的方式。
服务平台
该方式出示服务平台专用工具的租赁,企业将已有数据导进其服务平台或运用服务平台专用工具导进第三方数据,并且用其出示的专用工具开展测算,再将数值取回来。该方式下,服务平台依照数据量和使用时间开展收费标准。该方式很有可能与第三方数据储存相结合,针对客户而言,将数据放到第三方数据库房并应用其服务平台开展测算,比较方便快捷。
广告宣传等运用
根据将大数据开展分析和挑选,进而将广告宣传要求连接至DSP服务平台等,供即时竞价等。
人工智能技术开发设计
该运营模式关键根据大数据分析持续开展人工智能技术商品的开发设计,如Google的无人驾驶等。该方式在中国运用仍较少。
第三方储存
在该运营模式下,企业自身并不建造数据库或是数据管理中心,只是立即将数据上传入第三方开展储存和管理方法,该方式针对企业的资本开支工作压力较小。除此之外,大家注意到第三方储存因为其在技术性和机器设备上的领跑性,能够协助企业在节约项目投资的状况下得到 不错实际效果。
关于大数据的运营模式包括哪些方面,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)