1 >
我把K-mediods的matlab代码贴出来,你好好学习一下
function label = kmedoids( data,k,start_data )
% kmedoids k中心点算法函数
% data 待聚类的数据集,每一行是一个样本数据点
% k 聚类个数
% start_data 聚类初始中心值,每一行为一个中心点,有cluster_n行
% class_idx 聚类结果,每个样本点标记的类别
% 初始化变量
n = length(data);
dist_temp1 = zeros(n,k);
dist_temp2 = zeros(n,k);
last = zeros(n,1);
a = 0;
b = 0;
if nargin==3
centroid = start_data;
else
centroid = data(randsample(n,k),:);
end
for a = 1:k
temp1 = ones(n,1)centroid(a,:);
dist_temp1(:,a) = sum((data-temp1)^2,2);
end
[~,label] = min(dist_temp1,[],2);
while any(label~=last)
for a = 1:k
temp2 = ones(numel(data(label==a)),1);
temp3 = data(label==a);
for b = 1:n
temp4 = temp2data(b,:);
temp5 = sum((temp3-temp4)^2,2);
dist_temp2(b,a) = sum(temp5,1);
end
end
[~,centry_indx] = min(dist_temp2,[],1);
last = label;
centroid = data(centry_indx,:);
for a = 1:k
temp1 = ones(n,1)centroid(a,:);
dist_temp1(:,a) = sum((data-temp1)^2,2);
end
[~,label] = min(dist_temp1,[],2);
end
end
难得被人求助一次, 这个必须回答一下 不过你的需求确实没有写得太清楚 根据k值算法出来的是主要颜色有三个, 所以我把三个颜色都打在记事本里了 如果和你的需求有误, 请自行解决吧
另外这里需要用到numpy的库, 希望你装了, 如果没装, 这个直接安装也比较麻烦, 可以看一下portablepython的绿色版。
代码如下:
# -- coding: utf-8 --
import Image
import random
import numpy
class Cluster(object):
def __init__(self):
selfpixels = []
selfcentroid = None
def addPoint(self, pixel):
selfpixelsappend(pixel)
def setNewCentroid(self):
R = [colour[0] for colour in selfpixels]
G = [colour[1] for colour in selfpixels]
B = [colour[2] for colour in selfpixels]
R = sum(R) / len(R)
G = sum(G) / len(G)
B = sum(B) / len(B)
selfcentroid = (R, G, B)
selfpixels = []
return selfcentroid
class Kmeans(object):
def __init__(self, k=3, max_iterations=5, min_distance=50, size=200):
selfk = k
selfmax_iterations = max_iterations
selfmin_distance = min_distance
selfsize = (size, size)
def run(self, image):
selfimage = image
selfimagethumbnail(selfsize)
selfpixels = numpyarray(imagegetdata(), dtype=numpyuint8)
selfclusters = [None for i in range(selfk)]
selfoldClusters = None
randomPixels = randomsample(selfpixels, selfk)
for idx in range(selfk):
selfclusters[idx] = Cluster()
selfclusters[idx]centroid = randomPixels[idx]
iterations = 0
while selfshouldExit(iterations) is False:
selfoldClusters = [clustercentroid for cluster in selfclusters]
print iterations
for pixel in selfpixels:
selfassignClusters(pixel)
for cluster in selfclusters:
clustersetNewCentroid()
iterations += 1
return [clustercentroid for cluster in selfclusters]
def assignClusters(self, pixel):
shortest = float('Inf')
for cluster in selfclusters:
distance = selfcalcDistance(clustercentroid, pixel)
if distance < shortest:
shortest = distance
nearest = cluster
nearestaddPoint(pixel)
def calcDistance(self, a, b):
result = numpysqrt(sum((a - b) 2))
return result
def shouldExit(self, iterations):
if selfoldClusters is None:
return False
for idx in range(selfk):
dist = selfcalcDistance(
numpyarray(selfclusters[idx]centroid),
numpyarray(selfoldClusters[idx])
)
if dist < selfmin_distance:
return True
if iterations <= selfmax_iterations:
return False
return True
# ############################################
# The remaining methods are used for debugging
def showImage(self):
selfimageshow()
def showCentroidColours(self):
for cluster in selfclusters:
image = Imagenew("RGB", (200, 200), clustercentroid)
imageshow()
def showClustering(self):
localPixels = [None] len(selfimagegetdata())
for idx, pixel in enumerate(selfpixels):
shortest = float('Inf')
for cluster in selfclusters:
distance = selfcalcDistance(
clustercentroid,
pixel
)
if distance < shortest:
shortest = distance
nearest = cluster
localPixels[idx] = nearestcentroid
w, h = selfimagesize
localPixels = numpyasarray(localPixels)\
astype('uint8')\
reshape((h, w, 3))
colourMap = Imagefromarray(localPixels)
colourMapshow()
if __name__=="__main__":
from PIL import Image
import os
k_image=Kmeans()
path = r'\\pics\\'
fp = open('file_colortxt','w')
for filename in oslistdir(path):
print path+filename
try:
color = k_imagerun(Imageopen(path+filename))
fpwrite('The color of '+filename+' is '+str(color)+'\n')
except:
print "This file format is not support"
fpclose()
以上就是关于急求:谁懂Kmeans聚类算法,求一完整的Kmeans聚类的matlab源程序,一定要多维的,最好带图像,不胜感激全部的内容,包括:急求:谁懂Kmeans聚类算法,求一完整的Kmeans聚类的matlab源程序,一定要多维的,最好带图像,不胜感激、MATLAB 有序聚类突变检验核心程序、怎么用Matlab计算聚类算法的正确率问题等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)