arduino 平衡小车需要用编码器A相B相吗

arduino 平衡小车需要用编码器A相B相吗,第1张

首先必须需要有一个车底盘如4WD或者2WD,然后需要一个双H桥电机驱动器,作为动力推动小车运动,这时就需要一个Arduino UNO控制器。它是整个系统的核心,需要判断前进还是后退,左转还是右转。要增加寻线功能还需要至少三个红外寻线传感器,为了方便插接再加上一个Arduino传感器扩展板,这样整个系统就完成了。最后装上电池,写好程序就可以实现功能了。

两轮自平衡小车解决摆动问题。方法如下:

1、PID控制算法:PID控制器是一种经典的反馈控制算法,通过测量小车的倾斜角度和倾斜速度,从而计算出需要施加到小车上的控制力,以保持小车的平衡。

2、LQR控制算法:线性二次调节(LQR)是现代控制理论中广泛使用的一种方法。

3、卡尔曼滤波算法:卡尔曼滤波器是一种用于估计系统状态和控制输入的优秀方法,通过连续地测量和迭代来更新估计值,从而修正误差并提高小车的稳定性。

骑客智能平衡车告诉您:平衡车的运作原理主要是飞机平衡的原理,也就是车辆本身的自动平衡能力(电子自衡系统)。以内置的精密电子陀螺仪来判断车身所处的姿势状态,透过精密且高速的中央微处理器计算出适当的指令后,驱动马达来做到平衡的效果。假设我们以站在车上的驾驶人与车辆的总体重心纵轴作为参考线。当这条轴往前倾斜时,平衡车车身内的内置电动马达会产生往前的力量,一方面平衡人与车往前倾倒的扭矩,一方面产生让车辆前进的加速度,相反的,当陀螺仪发现驾驶人的重心往后倾时,也会产生向后的力量达到平衡效果。因此,驾驶人只要改变自己身体的角度往前或往后倾,平衡车就会根据倾斜的方向前进或后退,而速度则与驾驶人身体倾斜的程度呈正比。原则上,只要平衡车有正确打开电源且能保持足够运作的电力,车上的人就不用担心有倾倒跌落的可能,这与一般需要靠驾驶人自己进行平衡的滑板车等交通工具大大不同。

PID算法是工业应用中最广泛算法之一,在闭环系统的控制中,可自动对控制系统进行准确且迅速的校正。PID算法已经有100多年历史,在四轴飞行器,平衡小车、汽车定速巡航、温度控制器等场景均有应用。

之前做过循迹车项目,简单循迹摇摆幅度较大,效果如下所示:

PID算法优化后,循迹稳定性能较大提升,效果如下所示:

PID算法:就是“比例(proportional)、积分(integral)、微分(derivative)”,是一种常见的“保持稳定”控制算法。

常规的模拟PID控制系统原理框图如下所示:

因此可以得出e(t)和u(t)的关系:

其中:

Kp:比例增益,是调适参数;

Ki:积分增益,也是调适参数;

Kd:微分增益,也是调适参数;

e:误差=设定值(SP)- 回授值(PV);

t:目前时间。

数学公式可能比较枯燥,通过以下例子,了解PID算法的应用。

例如,使用控制器使一锅水的温度保持在50℃,小于50℃就让它加热,大于50度就断电不就行了?

没错,在要求不高的情况下,确实可以这么干,如果换一种说法,你就知道问题出在哪里了。

如果控制对象是一辆汽车呢?要是希望汽车的车速保持在50km/h不动,这种方法就存在问题了。

设想一下,假如汽车的定速巡航电脑在某一时间测到车速是45km/h,它立刻命令发动机:加速!

结果,发动机那边突然来了个100%全油门,嗡的一下汽车急加速到了60km/h,这时电脑又发出命令:刹车!结果乘客吐

所以,在大多数场合中,用“开关量”来控制一个物理量就显得比较简单粗暴了,有时候是无法保持稳定的,因为单片机、传感器不是无限快的,采集、控制需要时间。

而且,控制对象具有惯性,比如将热水控制器拔掉,它的“余热”即热惯性可能还会使水温继续升高一小会。

此时就需要使用PID控制算法了。

接着咱再来详细了解PID控制算法的三个最基本的参数:Kp比例增益、Ki积分增益、Kd微分增益。

1、Kp比例增益

Kp比例控制考虑当前误差,误差值和一个正值的常数Kp(表示比例)相乘。需要控制的量,比如水温,有它现在的 当前值 ,也有我们期望的 目标值 。

当两者差距不大时,就让加热器“轻轻地”加热一下。

要是因为某些原因,温度降低了很多,就让加热器“稍稍用力”加热一下。

要是当前温度比目标温度低得多,就让加热器“开足马力”加热,尽快让水温到达目标附近。

这就是P的作用,跟开关控制方法相比,是不是“温文尔雅”了很多。

实际写程序时,就让偏差(目标减去当前)与调节装置的“调节力度”,建立一个一次函数的关系,就可以实现最基本的“比例”控制了~

Kp越大,调节作用越激进,Kp调小会让调节作用更保守。

若你正在制作一个平衡车,有了P的作用,你会发现,平衡车在平衡角度附近来回“狂抖”,比较难稳住。

2、Kd微分增益

Kd微分控制考虑将来误差,计算误差的一阶导,并和一个正值的常数Kd相乘。

有了P的作用,不难发现,只有P好像不能让平衡车站起来,水温也控制得晃晃悠悠,好像整个系统不是特别稳定,总是在“抖动”。

设想有一个d簧:现在在平衡位置上,拉它一下,然后松手,这时它会震荡起来,因为阻力很小,它可能会震荡很长时间,才会重新停在平衡位置。

请想象一下:要是把上图所示的系统浸没在水里,同样拉它一下 :这种情况下,重新停在平衡位置的时间就短得多。

此时需要一个控制作用,让被控制的物理量的“变化速度”趋于0,即类似于“阻尼”的作用。

因为,当比较接近目标时,P的控制作用就比较小了,越接近目标,P的作用越温柔,有很多内在的或者外部的因素,使控制量发生小范围的摆动。

D的作用就是让物理量的速度趋于0,只要什么时候,这个量具有了速度,D就向相反的方向用力,尽力刹住这个变化。

Kd参数越大,向速度相反方向刹车的力道就越强,如果是平衡小车,加上P和D两种控制作用,如果参数调节合适,它应该可以站起来了。

3、Ki积分增益

Ki积分控制考虑过去误差,将误差值过去一段时间和(误差和)乘以一个正值的常数Ki。

还是以热水为例,假如有个人把加热装置带到了非常冷的地方,开始烧水了,需要烧到50℃。

在P的作用下,水温慢慢升高,直到升高到45℃时,他发现了一个不好的事情:天气太冷,水散热的速度,和P控制的加热的速度相等了。

这可怎么办?

P兄这样想:我和目标已经很近了,只需要轻轻加热就可以了。

D兄这样想:加热和散热相等,温度没有波动,我好像不用调整什么。

于是,水温永远地停留在45℃,永远到不了50℃。

根据常识,我们知道,应该进一步增加加热的功率,可是增加多少该如何计算呢?

前辈科学家们想到的方法是真的巧妙,设置一个积分量,只要偏差存在,就不断地对偏差进行积分(累加),并反应在调节力度上。

这样一来,即使45℃和50℃相差不是太大,但是随着时间的推移,只要没达到目标温度,这个积分量就不断增加,系统就会慢慢意识到:还没有到达目标温度,该增加功率啦!

到了目标温度后,假设温度没有波动,积分值就不会再变动,这时,加热功率仍然等于散热功率,但是,温度是稳稳的50℃。

Ki的值越大,积分时乘的系数就越大,积分效果越明显,所以,I的作用就是,减小静态情况下的误差,让受控物理量尽可能接近目标值。

I在使用时还有个问题:需要设定积分限制,防止在刚开始加热时,就把积分量积得太大,难以控制。

PID算法的参数调试是指通过调整控制参数(比例增益、积分增益/时间、微分增益/时间) 让系统达到最佳的控制效果 。

调试中稳定性(不会有发散性的震荡)是首要条件,此外,不同系统有不同的行为,不同的应用其需求也不同,而且这些需求还可能会互相冲突。

PID算法只有三个参数,在原理上容易说明,但PID算法参数调试是一个困难的工作,因为要符合一些特别的判据,而且PID控制有其限制存在。

1、稳定性

若PID算法控制器的参数未挑选妥当,其控制器输出可能是不稳定的,也就是其输出发散,过程中可能有震荡,也可能没有震荡,且其输出只受饱和或是机械损坏等原因所限制。不稳定一般是因为过大增益造成,特别是针对延迟时间很长的系统。

2、最佳性能

PID控制器的最佳性能可能和针对过程变化或是设定值变化有关,也会随应用而不同。

两个基本的需求是调整能力(regulation,干扰拒绝,使系统维持在设定值)及命令追随 (设定值变化下,控制器输出追随设定值的反应速度)。有关命令追随的一些判据包括有上升时间及整定时间。有些应用可能因为安全考量,不允许输出超过设定值,也有些应用要求在到达设定值过程中的能量可以最小化。

3、各调试方法对比

4、调整PID参数对系统的影响

陀螺仪的作用

两轮自平衡机器人控制系统除了需要实时的倾角信号,还要用到角速度以给出控制量。理论上可以对加速度计测得的倾角求导得到角速度,但实际上这样求得的结果远远低于陀螺仪测量的精度,陀螺仪具有动态性能好的优点。

(1)陀螺仪的直接输出值是相对灵敏轴的角速率,角速率对时间积分即可得到围绕灵敏轴旋转过的角度值。由于系统采用微控制器循环采样程序获得陀螺仪角速率信息,即每隔一段很短的时间采样一次,所以采用累加的方法实现积分的功能来计算角度值。

(2)陀螺仪是用来测量角速度信号的,通过对角速度积分,能得到角度值。但由于温度变化、摩擦力、不稳定力矩等因素,陀螺仪会产生漂移误差。而无论多么小的常值漂移通过积分都会得到无限大的角度误差。因而不能单独使用陀螺仪作为自平衡小车的角度传感器。

2倾角传感器的作用

(1)倾角传感器中加速度计可能测量动态和静态线性加速度。静态加速度的一个典型例子就是重力加速度,用加速度计数直接测量物体静态重力加速度可以确定倾斜角度。

加速度传感器静止时,加速传感器仅仅输出作用在加速度灵敏轴上的重力加速度值,即重力加速度的分量值。根据各轴上的重力加速度的分量值可以算出物体垂直和水平方向上的倾斜角度。

(2)加速度计动态响应慢,不适应跟踪动态角度运动;如果期望快速地响应,又会引起较大的噪声。再加上其测量范围的限制,使得单独应用加速度计检测车体倾角并不合适,需要与其它传感器共同使用。

3原理

其运作原理主要是建立在一种被称为“动态稳定”(Dynamic Stabilization)的基本原理上,利用车体内部的陀螺仪和加速度传感器,来检测车体姿态的变化,并利用伺服控制系统,精确地驱动电机进行相应的调整,以保持系统的平衡。

以上就是关于arduino 平衡小车需要用编码器A相B相吗全部的内容,包括:arduino 平衡小车需要用编码器A相B相吗、两轮自平衡小车解决摆动问题吗、两轮平衡小车原理等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/9276097.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存