其实你把课好好听、作业认真完成都搞懂就可以了,不要这么紧张。我经验是最后考试题目非常简单。要注重培养逻辑思维,模仿计算机按步骤办事计算。有问题再问我好了。
附上:对高中数学中算法的几点认识(网上找的,意义不大)
算法属于新教材的新增内容,笔者结合自己的教学体会,谈谈对算法的理解和认识,供各位同仁参考:
1、算法的内容
(1)自然语言(2)程序框图(3)算法语句,其中,在每种语言中有各自的结构,如:顺序结构、循环结构、条件结构等。
2、算法在高中课程中的地位:
算法内容的设计分为两部分。
一部分主要介绍算法的基础知识,可以称作算法的“三基”:算法基本思想,算法基本结构,算法基本语句。通过一些具体的案例介绍算法的基本思想,使学生了解:为了解决一个问题,设计出解决问题的系列步骤,任何人实施这些步骤就可以解决问题,这就是解决问题的一个算法。这是对算法的一种广义的理解。对算法的理解,更多地是与计算机联系在一起,计算机可以完成这些步骤。
算法的基本结构一般有三种:顺序结构,分叉结构,循环结构。前两种结构很容易理解,循环结构稍微有点难,这里用到函数思想,难在理解反映循环过程的循环变量。在教学过程中,一定要通过具体的案例,结合具体的情境引入概念,会使问题变得很简单。
介绍算法语句的时候,要区分算法语言和基本的算法语句。我们知道,现在使用的算法语言是很多的,例如,basic 语言,q-basic 语言,c-语言,等等。在高中的数学课程中,不要求介绍算法语言,仅仅需要了解基本语句,例如,输入语句,输出语句,赋值语句,条件语句,循环语句,等等。在不同的语言中,这些语句的表示可能不一样,数学课程要求采用公认的统一表示,称为伪代码。很容易把伪代码翻译成任何一种算法语言。
描述算法有三种语言:自然语言、框图语言、基本算法语句。
算法的另一部分设计,是把算法的思想融入相关数学内容中。实际上,算法思想是贯穿在高中数学课程始终的基本思想。例如,二分法求方程的解;点到直线的距离、点到平面的距离、直线到直线距离;立体几何性质定理的证明过程;一元二次不等式;线性规划;等等内容中,都运用了算法思想。
用算法思想学习和认识数学对于提高数学素养是很有用的,希望老师予以重视。
3、理解赋值语句:
赋值是算法中的难点之一,理解赋值对于理解算法是非常重要的。
赋值就是把数值赋予给定的变量。例如,a:=5,就表示变量a被赋予的值是5,即a=5,这个被赋值的变量可以与其他的值进行运算。对于被赋值的变量a,还可以赋予其它的值取代原来的值。我们可以用磁带录音来比喻赋值,在我们录音时,是把磁带上旧的录音材料冲掉之后,才能把新的录音材料加载上去。同样的道理,我们这里的赋值也是先把原来的值清零之后,再把新的值赋上去。下面我们通过一个例子来说明如何设置变量和给变量赋值。
例:设计一个算法,从4个不同的数中找出最大数。
解:记这5个不同的数分别为a1,a2,a3,a4,a5,算法步骤如下:
1、比较a1与a2将较大的数记作b
(在这一步中,b表示的是前2个数中的最大数)
2、再将b与a3进行比较,将较大的数记作b
(执行完这一步后,b的值就是前3个数中的最大数)
3、再将b与a4进行比较,将较大的数记作b
(执行完这一步后,b的值就是前4个数中的最大数)
4、输出b,b的值即为所求得最大数。
分析:上述算法的4个步骤中,每步都要与上一步中得到的最大数b进行比较,得出新的最大数。b可以取不同的值,b就称之为变量。在第1步到第3步的算法过程中,我们都把比较后的较大数记作b,即把值赋予了b,这个过程就是赋值的过程,这个过程有两个功能,第一,我们可以不断地对b的值进行改变,即把数值放入b中;第二,b的值每变化一次都是为下一步的比较服务。
4、函数在循环结构中的作用:
(1)循环结构是算法的一种基本结构。
例如,设计算法,输出1000以内能被3和5整除的所有正整数。解决这个问题,我们首先要引入变量a表示待输出的数,则a=15n (n=1,2,3,…,66)n从n从1变到66,反复输出a,就能输出1000以内的所有能被3和5整除的正整数。像这样的算法结构称为循环结构,其中反复执行的部分称为循环体。变量n控制着循环的开始和结束,称为循环变量。
(2)循环结构是理解算法的另一个难点,难点在于对于循环变量的理解。
循环结构中的循环变量分为两种形式,一种是控制循环次数的变量,例如,输出1000以内能被3和5整除的所有正整数这个循环结构中,n就是控制循环次数的循环变量。另一种是控制结果精确度的变量,例如用二分法算法求方程f(x)=0在区间[0,1]上的一个近似解的流程图,要求精确度为。在这个算法过程中,精确度就是控制结果精确度的循环变量。
循环变量使得循环体得以“循环”,循环变量控制了循环的“开始”和“结束”,是刻画循环结构的关键。
以上几点是对算法的粗浅认识,不当之处,请批评指正!
an=(n^2-n)/2+1
求数列前20项和
∴在①处应该填写p=((i+1)^2-(i+1))/2+1
由框图可知
I为循环变量,P=a(i),S为前i项和
当i=1时,p=a1=1,S1=0+1=1
在①处应该填写p=((i+1)^2-(i+1))/2+1计算p=a2
循环变量加1,i=i+1=2
返回判断i=2是否<=20
进入第二次循环
当i=2时,p=a2=2,S2=S1+2=3
在①处应该填写p=((i+1)^2-(i+1))/2+1计算p=a3
循环变量加1,i=i+1=3
返回判断i=3是否<=20
……
当i>20时输出
作为初中的程序题,一个一个代入计算反而便捷。
你看:(1)X=3代入得y=6<100回代
(2)X=6代入得y=21<100回代
(3)X=21代入得y=231>100输出
所以输出的结果是231
这样三步就解决问题,不是很便捷吗?
解:第1步:n=1,x=0,y=1;
第2步:n=2,x=05,y=2;
第3步:n=3,x=15,y=6;
第4步:输出:x=15,y=6;
所以应该选C:y=4x。
1、程序框图基本概念:
(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应 *** 作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用
学习这部分知识的时候,要掌握各个图形的'形状、作用及使用规则,画程序框图的规则如下:
1、使用标准的图形符号。2、框图一般按从上到下、从左到右的方向画。3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的唯一符号。4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的 *** 作后,才能接着执行B框所指定的 *** 作。
2、条件结构:
条件结构是指在算法中通过对条件的判断
根据条件是否成立而选择不同流向的算法结构。
条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。
3、循环结构:
在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:
(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。
(2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。
当型循环结构 直到型循环结构
注意:1循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构,但不允许“死循环”。2在循环结构中都有一个计数变量和累加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次。
以上就是关于高中数学的算法,程序框图全部的内容,包括:高中数学的算法,程序框图、高中数学 关于一道补充程序框图 如图: 所示的是求S=1+2+4+7+11+....的前20项和的程序框图,①出应该填___、初中数学程序框图题(求思路)等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)