DISP(“请输入一个128点的序列中');
,II = 1:128%的用户都可以自由进入序列
(2)=输入(['X('num2str(二) ')=']);
结束
%整体采用原位计算
米= nextpow2(X),N = 2 ^米;找到x对应的长度的功率最低的子米
如果长度(x)<N
所述= [的x,零(1,N-长度(x))];%,如果x的长度不是一个功率为2,补0至2的整数次幂
结束
NXD = BIN2DEC(fliplr(DEC2BIN([1:N] -1,M)))+1%寻求1:2 ^ M系列数反向
= X(NXD);%递减x到y的初始值
毫米= 1:M%DFT m次基2分解,由左到右,每个分解DFT *** 作共做的m级蝶形运算,每一级有2 ^(毫米-1)蝴蝶结
的Nz = 2 ^毫米; u = 1时;%旋转因子u被初始化为WN ^ 0 = 1
WN = exp(-I 2 PI /新西兰);%分解DFT因子WN = exp(-I 2 PI /新西兰)
对于j = 1:新西兰/ 2%跨度的蝶形运算的时间间隔内,在此期间第一毫米级运算需要蝴蝶
2 ^(毫米-1)K = J:NZ:N%的蝴蝶形状计算跨越间隔NZ = 2 ^毫米 /> KP = K / 2 + NZ;主体之间的关系的两个因子的相应单元%蝶形运算
吨= y(上KP)ü;%的蝶形运算的乘积项
Y(KP )= Y(K)-T%蝶形运算
Y(K)= Y(K)+ T%的蝶形运算
U = U WN结束;旋转因子骑一个的基本DFT因素WN
结束
结束
Y1 = FFT(X)%与直接调用函数后的经营业绩相比,自己编译FFT
11 实验目的
1.了解数字信号处理系统的一般构成;
2.掌握奈奎斯特抽样定理。
12 实验仪器
1.YBLD智能综合信号源测试仪 1台
2.双踪示波器 1台
3.MCOM-TG305数字信号处理与现代通信技术实验箱 1台
4.PC机(装有MATLAB、MCOM-TG305配套实验软件) 1台
13 实验原理
一个典型的DSP系统除了数字信号处理部分外,还包括A/D和D/A两部分。这是因为自然界的信号,如声音、图像等大多是模拟信号,因此需要将其数字化后进行数字信号处理,模拟信号的数字化即称为A/D转换。数字信号处理后的数据可能需还原为模拟信号,这就需要进行D/A转换。一个仅包括A/D和D/A两部分的简化数字信号处理系统功能如图1所示。
A/D转换包括三个紧密相关的过程,即抽样、量化和编码。A/D转换中需解决的以下几个重要问题:抽样后输出信号中还有没有原始信号的信息?如果有能不能把它取出来?抽样频率应该如何选择?
奈奎斯特抽样定理(即低通信号的均匀抽样定理)告诉我们,一个频带限制在0至fx以内的低通信号x(t),如果以fs≥2fx的抽样速率进行均匀抽样,则x(t)可以由抽样后的信号xs(t)完全地确定,即xs(t)包含有x(t)的成分,可以通过适当的低通滤波器不失真地恢复出x(t)。最小抽样速率fs=2fx称为奈奎斯特速率。
低通
译码
编码
量化
抽样
输入信号 样点输出 滤波输出
A/D(模数转换) D/A(数模转换)
图1 低通采样定理演示
为方便实现,实验中更换了一种表现形式,即抽样频率固定(10KHz),通过改变输入模拟信号的频率来展示低通抽样定理。我们可以通过研究抽样频率和模拟信号最高频率分量的频率之间的关系,来验证低通抽样定理。
14 实验内容
1.软件仿真实验:编写并调试MATLAB程序,分析有关参数,记录有关波形。
2.硬件实验:输入不同频率的正弦信号,观察采样时钟波形、输入信号波形、样点输出波形和滤波输出波形。
15 MATLAB参考程序和仿真内容
%%
%f—余弦信号的频率
% M—基2 FFT幂次数 N=2^M为采样点数,这样取值是为了便于作基2的FFT分析
%2 采样频率Fs
%%
function samples(f,Fs,M)
N=2^M; % fft点数=取样总点数
Ts=1/Fs; % 取样时间间隔
T=NTs; % 取样总时间=取样总点数取样时间间隔
n=0:N-1;
t=nTs;
Xn=cos(2fpit);
subplot(2,1,1);
stem(t,Xn);
axis([0 T 11min(Xn) 11max(Xn)]);
xlabel('t -->');
ylabel('Xn');
Xk=abs(fft(Xn,N));
subplot(2,1,2);
stem(n,Xk);
axis([0 N 11min(Xk) 11max(Xk)]);
xlabel('frequency -->');
ylabel('!Xk!');
%%
假如有一个1Hz的余弦信号y=cos(2πt),对其用4Hz的采样频率进行采样,共采样32点,只需执行samples(1,4,5),即可得到仿真结果。
软件仿真实验内容如下表所示:
仿真参数
f
Fs
Wo(计算)
Xn(图形)
Xk(图形)
(1,4,5)
另外记录图形,并标图号
(1,8,5)
(2,8,6)
自 选
16 硬件实验步骤
本实验箱采样频率fs固定为10KHz,低通滤波器的截止频率约为45KHz。
1、用低频信号源产生正弦信号,正弦信号源频率f自定,并将其接至2TP2(模拟输入)端,将示波器通道一探头接至2TP6(采样时钟)端观察采样时钟波形,示波器通道二探头接至2TP2观察并记录输入信号波形。
2、将示波器通道二探头接至2TP3观察并记录样点输出波形。
3、将示波器通道二探头接至2TP4观察并记录滤波输出波形。
4、根据采样定理,分f=fs /8、f=fs/4、f=fs/2等3种情况更改正弦信号频率,重复步骤2至步骤3。
5、用低频信号源产生方波信号,重复步骤1至步骤4。
17 思考题
1、 讨论在仿真实验中所计算的数字域频率Wo和Xk的图形中非零谱线位置之间的对应关系。
2、 讨论在仿真实验中自选参数的意义。
3、将在2TP2端加方波信号后的恢复波形,与相同频率的正弦信号的恢复波形相比,能够得出哪些结论?
2 FFT频谱分析实验
21 实验目的
1.通过实验加深对快速傅立叶变换(FFT)基本原理的理解。
2.了解FFT点数与频谱分辨率的关系,以及两种加长序列FFT与原序列FFT的关系。
22 实验仪器
1.YBLD智能综合信号源测试仪 1台
2.双踪示波器 1台
3.MCOM-TG305数字信号处理与现代通信技术实验箱 1台
4.PC机(装有MATLAB、MCOM-TG305配套实验软件) 1台
23 实验原理
离散傅里叶变换(DFT)和卷积是信号处理中两个最基本也是最常用的运算,它们涉及到信号与系统的分析与综合这一广泛的信号处理领域。实际上卷积与DFT之间有着互通的联系:卷积可化为DFT来实现,其它的许多算法,如相关、滤波和谱估计等都可化为DFT来实现,DFT也可化为卷积来实现。
对N点序列x(n),其DFT变换对定义为:
在DFT运算中包含大量的重复运算。FFT算法利用了蝶形因子WN的周期性和对称性,从而加快了运算的速度。FFT算法将长序列的DFT分解为短序列的DFT。N点的DFT先分解为2个N/2点的DFT,每个N/2点的DFT又分解为2个N/4点的DFT。按照此规律,最小变换的点数即所谓的“基数(radix)。”因此,基数为2的FFT算法的最小变换(或称蝶形)是2点DFT。一般地,对N点FFT,对应于N个输入样值,有N个频域样值与之对应。一般而言,FFT算法可以分为时间抽取(DIT)FFT和频率抽取(DIF)两大类。
在实际计算中,可以采用在原来序列后面补0的加长方法来提高FFT的分辨率;可以采用在原来序列后面重复的加长方法来增加FFT的幅度。
24 实验内容
1.软件仿真实验:分别观察并记录正弦序列、方波序列及改变FFT的点数后的频谱;分别观察并记录正弦序列、方波序列及2种加长序列等信号的频谱。
2.硬件实验:分别观察并记录正弦信号、方波信号及改变FFT的点数后的频谱。
25 MATLAB参考程序和仿真内容
%%
function[x]=ffts(mode,M)
Nfft=2^M;
x=zeros(1,Nfft); %定义一个长度为Nfft的一维全0数组
if mode= =1 for n=0:Nfft-1 x(n+1)=sin(2pin/Nfft); end
end %定义一个长度为Nfft的单周期正弦序列
if mode= =2 for n=0:Nfft-1 x(n+1)=sin(4pin/Nfft); end
end %定义一个长度为Nfft的双周期正弦序列
if mode= =3 for n=0:Nfft/2-1 x(n+1)=sin(4pin/Nfft); end
end %定义一个长度为Nfft/2的正弦序列,后面一半为0序列。
if mode= =4 for n=0:Nfft-1 x(n+1)=square(2pin/Nfft); end
end
if mode= =5 for n=0:Nfft-1 x(n+1)=square(2pin/Nfft); end
end
if mode= =6 for n=0:Nfft/2-1 x(n+1)=square(4pin/Nfft); end
end
n=0:Nfft-1;
subplot(2,1,1);
stem(n,x);
axis([0 Nfft-1 11min(x) 11max(x)]);
xlabel('Points-->');
ylabel('x(n)');
X=abs(fft(x,Nfft));
subplot(2,1,2);
stem(n,X);
axis([0 Nfft-1 11min(X) 11max(X)]);
xlabel('frequency-->');
ylabel('!X(k)!');
%%
假设需观察方波信号的频谱,对一个周期的方波信号作32点的FFT,则只需在MATLAB的命令窗口下键入:[x]=ffts(21,5) ,程序进行模拟,并且输出FFT的结果。
关于软件仿真实验内容,建议在完成大量仿真例子的基础上,选择能够体现实验要求的4个以上的例子进行记录。例如要观察后面补0的加长方法来提高FFT的分辨率的现象,可以仿真ffts(4,5)和ffts(6,6)两个例子。
26 硬件实验步骤
1.将低频信号源输出加到实验箱模拟通道1输入端,将示波器探头接至模拟通道1输出端。
2.在保证实验箱正确加电且串口电缆连接正常的情况下,运行数字信号处理与DSP应用实验开发软件,在“数字信号处理实验”菜单下选择“FFT频谱分析”子菜单,出现显示FFT频谱分析功能提示信息的窗口。
3.用低频信号产生器产生一个1KHz的正弦信号。
4.选择FFT频谱分析与显示的点数为64点,开始进行FFT运算。此后,计算机将周期性地取回DSP运算后的FFT数据并绘图显示
5.改信号源频率,观察并记录频谱图的变化。
6.选择FFT的点数为128点,观察并记录频谱图的变化。
7.更改正弦信号的频率,重复步骤4 ~步骤6。
8.用低频信号产生器产生一个1KHz的方波信号,重复步骤4 ~步骤7。注意:应根据实验箱采样频率fs为10KHz和方波信号的频带宽度选择方波信号的频率。
本硬件实验要进行两种信号,每个信号两种频率,每个信号两种点数等共8次具体实验内容,性质能够体现实验要求的4个以上的例子进行记录。
27 思考题
1.对同一个信号,不同点数FFT观察到的频谱图有何区别?
2.序列加长后FFT与原序列FFT的关系是什么,试推导其中一种关系。
3.用傅立叶级数理论,试说明正弦信号频谱和方波信号频谱之间的关系。
3 IIR滤波器设计实验
31 实验目的
1.通过实验加深对IIR滤波器基本原理的理解。
2.学习编写IIR滤波器的MATLAB仿真程序。
32 实验仪器
1.YBLD智能综合信号源测试仪 1台
2.双踪示波器 1台
3.MCOM-TG305数字信号处理与现代通信技术实验箱 1台
4.PC机(装有MATLAB、MCOM-TG305配套实验软件) 1台
33 实验原理
IIR滤波器有以下几个特点:
1.IIR数字滤波器的系统函数可以写成封闭函数的形式。
2.IIR数字滤波器采用递归型结构,即结构上带有反馈环路。IIR滤波器运算结构通常由延时、乘以系数和相加等基本运算组成,可以组合成直接型、正准型、级联型、并联型四种结构形式,都具有反馈回路。由于运算中的舍入处理,使误差不断累积,有时会产生微弱的寄生振荡。
3.IIR数字滤波器在设计上可以借助成熟的模拟滤波器的成果,如巴特沃斯、契比雪夫和椭圆滤波器等,有现成的设计数据或图表可查,其设计工作量比较小,对计算工具的要求不高。在设计一个IIR数字滤波器时,我们根据指标先写出模拟滤波器的公式,然后通过一定的变换,将模拟滤波器的公式转换成数字滤波器的公式。
4.IIR数字滤波器的相位特性不好控制,对相位要求较高时,需加相位校准网络。
在MATLAB下设计IIR滤波器可使用Butterworth函数设计出巴特沃斯滤波器,使用Cheby1函数设计出契比雪夫I型滤波器,使用Cheby2设计出契比雪夫II型滤波器,使用ellipord函数设计出椭圆滤波器。下面主要介绍前两个函数的使用。
与FIR滤波器的设计不同,IIR滤波器设计时的阶数不是由设计者指定,而是根据设计者输入的各个滤波器参数(截止频率、通带滤纹、阻带衰减等),由软件设计出满足这些参数的最低滤波器阶数。在MATLAB下设计不同类型IIR滤波器均有与之对应的函数用于阶数的选择。
一、巴特沃斯IIR滤波器的设计
在MATLAB下,设计巴特沃斯IIR滤波器可使用butter函数。
Butter函数可设计低通、高通、带通和带阻的数字和模拟IIR滤波器,其特性为使通带内的幅度响应最大限度地平坦,但同时损失截止频率处的下降斜度。在期望通带平滑的情况下,可使用butter函数。
butter函数的用法为:
[b,a]=butter(n,Wn,/ftype/)
其中n代表滤波器阶数,Wn代表滤波器的截止频率,这两个参数可使用buttord函数来确定。buttord函数可在给定滤波器性能的情况下,求出巴特沃斯滤波器的最小阶数n,同时给出对应的截止频率Wn。buttord函数的用法为:
[n,Wn]= buttord(Wp,Ws,Rp,Rs)
其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。当其值为1时代表采样频率的一半。Rp和Rs分别是通带和阻带区的波纹系数。
不同类型(高通、低通、带通和带阻)滤波器对应的Wp和Ws值遵循以下规则:
1.高通滤波器:Wp和Ws为一元矢量且Wp>Ws;
2.低通滤波器:Wp和Ws为一元矢量且Wp<Ws;
3.带通滤波器:Wp和Ws为二元矢量且Wp<Ws,如Wp=[02,07],Ws=[01,08];
4.带阻滤波器:Wp和Ws为二元矢量且Wp>Ws,如Wp=[01,08],Ws=[02,07]。
二、契比雪夫I型IIR滤波器的设计
在期望通带下降斜率大的场合,应使用椭圆滤波器或契比雪夫滤波器。在MATLAB下可使用cheby1函数设计出契比雪夫I型IIR滤波器。
cheby1函数可设计低通、高通、带通和带阻契比雪夫I型滤IIR波器,其通带内为等波纹,阻带内为单调。契比雪夫I型的下降斜度比II型大,但其代价是通带内波纹较大。
cheby1函数的用法为:
[b,a]=cheby1(n,Rp,Wn,/ftype/)
在使用cheby1函数设计IIR滤波器之前,可使用cheblord函数求出滤波器阶数n和截止频率Wn。cheblord函数可在给定滤波器性能的情况下,选择契比雪夫I型滤波器的最小阶和截止频率Wn。
cheblord函数的用法为:
[n,Wn]=cheblord(Wp,Ws,Rp,Rs)
其中Wp和Ws分别是通带和阻带的拐角频率(截止频率),其取值范围为0至1之间。当其值为1时代表采样频率的一半。Rp和Rs分别是通带和阻带区的波纹系数。
34 实验内容
1.软件仿真实验:编写并调试MATLAB程序,选择不同形式,不同类型的4种滤波器进行仿真,记录幅频和相频特性,对比巴特沃斯滤波器和契比雪夫滤波器。
2.硬件实验:设计IIR滤波器,在计算机上观察冲激响应、幅频特性和相频特性,然后下载到实验箱。用示波器观察输入输出波形,测试滤波器的幅频响应特性。
35 MATLAB参考程序和仿真内容
%%
%mode: 1--巴特沃斯低通;2--巴特沃斯高通;3--巴特沃斯带通;4--巴特沃斯带阻
% 5--契比雪夫低通;6--契比雪夫高通;7--契比雪夫带通;8--契比雪夫带阻
%fp1,fp2: 通带截止频率,当高通或低通时只有fp1有效
%fs1, fs2: 阻带截止频率,当高通或低通时只有fs1有效
%rp: 通带波纹系数
%as: 阻带衰减系数
%sample: 采样率
%h: 返回设计好的滤波器系数
%%
function[b,a]=iirfilt(mode,fp1,fp2,fs1,fs2,rp,as,sample)
wp1=2fp1/sample;wp2=2fp2/sample;
ws1=2fs1/sample;ws2=2fs2/sample;
%得到巴特沃斯滤波器的最小阶数N和3bd频率wn
if mode<3[N,wn]=buttord(wp1,ws1,rp,as);
elseif mode<5[N,wn]=buttord([wp1 wp2],[ws1 ws2],rp,as);
%得到契比雪夫滤波器的最小阶数N和3bd频率wn
elseif mode<7[N,wn]=cheb1ord(wp1,ws1,rp,as);
else[N,wn]=cheblord([wp1 wp2],[ws1 ws2],rp,as);
end
%得到滤波器系数的分子b和分母a
if mode= =1[b,a]=butter(N,wn);end
if mode= =2[b,a]=butter(N,wn,/high/);end
if mode= =3[b,a]=butter(N,wn);end
if mode= =4[b,a]=butter(N,wn,/stop/);end
if mode= =5[b,a]=cheby1(N,rp,wn);end
if mode= =6[b,a]=cheby1(N,rp,wn,/high/);end
if mode= =7[b,a]=cheby1(N,rp,wn);end
if mode= =8[b,a]=cheby1(N,rp,wn,/stop/);end
set(gcf,/menubar/,menubar);
freq_response=freqz(b,a);
magnitude=20log10(abs(freq_response));
m=0:511;
f=msample/(2511);
subplot(3,1,1);plot(f,magnitude);grid; %幅频特性
axis([0 sample/2 11min(magnitude) 11max(magnitude)]);
ylabel('Magnitude');xlabel('Frequency-->');
phase=angle(freq_response);
subplot(3,1,2);plot(f,phase);grid; %相频特性
axis([0 sample/2 11min(phase) 11max(phase)]);
ylabel('Phase');xlabel('Frequency-->');
h=impz(b,a,32); %32点的单位函数响应
t=1:32;
subplot(3,1,3);stem(t,h);grid;
axis([0 32 12min(h) 11max(h)]);
ylabel('h(n)');xlabel('n-->');
%%
假设需设计一个巴特沃斯低通IIR滤波器,通带截止频率为2KHz,阻带截止频率为3KHz,通带波纹系数为1,阻带衰减系数为20,采样频率为10KHz,则只需在MATLAB的命令窗口下键入:
[b,a]=iirfilt(1,2000,3000,2400,2600,1,20,10000)
程序进行模拟,并且按照如下顺序输出数字滤波器系统函数
的系数
b= b0 b1 ……bn
a= a0 a1 ……an
关于软件仿真实验内容,建议在完成大量仿真例子的基础上,选择能够体现实验要求的4个例子进行记录,系统函数只要记录系统的阶数。
36 硬件实验步骤
1.根据实验箱采样频率fs为10KHz的条件,用低频信号发生器产生一个频率合适的低频正弦信号,将其加到实验箱模拟通道1输入端,将示波器通道1探头接至模拟通道1输入端,通道2探头接至模拟通道2输出端。
2.在保证实验箱正确加电且串口电缆连接正常的情况下,运行数字信号处理与DSP应用实验开发软件,在“数字信号处理实验”菜单下选择“IIR滤波器”子菜单,出现提示信息。
3.输入滤波器类型、滤波器截止频率等参数后,分别点击“幅频特性”和“相频特性”按钮,在窗口右侧观察IIR滤波器的幅频特性和相频特性。此时提示信息将消失,如需查看提示信息,可点击“设计说明”按钮。
4.点击“下载实现”按钮,IIR滤波器开始工作,此时窗口右侧将显示IIR滤波器的幅频特性。
5.根据输入滤波器类型,更改低频信号源的频率,观察示波器上输入输出波形幅度的变化情况,测量IIR滤波器的幅频响应特性,看其是否与设计的幅频特性一致。
6.更改滤波器类型、滤波器截止频率等参数(共4种),重复步骤3至步骤5。所选择的例子参数最好和MATLAB仿真程序的例子一样。
7.用低频信号产生器产生一个500Hz的方波信号,分别设计3种滤波器,完成如下表要求的功能,并且记录参数和波形。
功 能
滤波器类型
参 数
输出波形
fp1
fp2
fs1
fs2
通过3次及以下次数的谐波
另外记录图形,并标图号
滤除5次及以下次数的谐波
通过3次到5次的谐波
37 思考题
1.在实验箱采样频率fs固定为10KHz的条件下,要观察方波信号频带宽度内的各个谐波分量,方波信号的频率最高不能超过多少,为什么?
2.硬件实验内容7中输出信号各个谐波分量,与原来方波信号同样谐波分量相比,有没有发生失真?主要发生了什么类型的失真?为什么?
4 窗函数法FIR滤波器设计实验
41 实验目的
1.通过实验加深对FIR滤波器基本原理的理解。
2.学习使用窗函数法设计FIR滤波器,了解窗函数的形式和长度对滤波器性能的影响。
42 实验仪器
1.YBLD智能综合信号源测试仪 1台
2.双踪示波器 1台
3.MCOM-TG305数字信号处理与现代通信技术实验箱 1台
4.PC机(装有MATLAB、MCOM-TG305配套实验软件) 1台
43 实验原理
数字滤波器的设计是数字信号处理中的一个重要内容。数字滤波器设计包括FIR(有限单位脉冲响应)滤波器与IIR(无限单位脉冲响应)滤波器两种。
与IIR滤波器相比,FIR滤波器在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性。设FIR滤波器单位脉冲响应h(n)长度为N,其系统函数H(z)为:
H(z)是z-1的N-1次多项式,它在z平面上有N-1个零点,原点z=0是N-1阶重极点,因此H(z)是永远稳定的。稳定和线性相位特性是FIR滤波器突出的优点。
FIR滤波器的设计任务是选择有限长度的h(n)。使传输函数H( )满足技术要求。FIR滤波器的设计方法有多种,如窗函数法、频率采样法及其它各种优化设计方法,本实验介绍窗函数法的FIR滤波器设计。
窗函数法是使用矩形窗、三角窗、巴特利特窗、汉明窗、汉宁窗和布莱克曼窗等设计出标准响应的高通、低通、带通和带阻FIR滤波器。
一、firl函数的使用
在MATLAB下设计标准响应FIR滤波器可使用firl函数。firl函数以经典方法实现加窗线性相位FIR滤波器设计,它可以设计出标准的低通、带通、高通和带阻滤波器。firl函数的用法为:
b=firl(n,Wn,/ftype/,Window)
各个参数的含义如下:
b—滤波器系数。对于一个n阶的FIR滤波器,其n+1个滤波器系数可表示为:b(z)=b(1)+b(2)z-1+…+b(n+1)z-n。
n—滤波器阶数。
Wn—截止频率,0≤Wn≤1,Wn=1对应于采样频率的一半。当设计带通和带阻滤波器时,Wn=[W1 W2],W1≤ω≤W2。
ftype—当指定ftype时,可设计高通和带阻滤波器。Ftype=high时,设计高通FIR滤波器;ftype=stop时设计带阻FIR滤波器。低通和带通FIR滤波器无需输入ftype参数。
Window—窗函数。窗函数的长度应等于FIR滤波器系数个数,即阶数n+1。
二、窗函数的使用
在MATLAB下,这些窗函数分别为:
1.矩形窗:w=boxcar(n),产生一个n点的矩形窗函数。
2.三角窗:w=triang(n),产生一个n点的三角窗函数。
当n为奇数时,三角窗系数为w(k)=
当n为偶数时,三角窗系数为w(k)=
3.巴特利特窗:w=Bartlett(n),产生一个n点的巴特利特窗函数。
巴特利特窗系数为w(k)=
巴特利特窗与三角窗非常相似。巴特利特窗在取样点1和n上总以零结束,而三角窗在这些点上并不为零。实际上,当n为奇数时bartlett(n)的中心n-2个点等效于triang(n-2)。
4.汉明窗:w=hamming(n),产生一个n点的汉明窗函数。
汉明窗系数为w(k+1)=054-046cos( ) k=0,…,n-1
5.汉宁窗:w=hanning(n),产生一个n点的汉宁窗函数。
汉宁窗系数为w(k)=05[1-cos( )] k=1,…,n
6.布莱克曼窗:w=Blackman(n),产生一个n点的布莱克曼窗函数。
布莱克曼窗系数为w(k)=042-05cos(2π )+08cos(4π )] k=1,…,n
与等长度的汉明窗和汉宁窗相比,布莱克曼窗的主瓣稍宽,旁瓣稍低。
7.凯泽窗:w=Kaiser(n,beta),产生一个n点的凯泽窗数,其中beta为影响窗函数旁瓣的β参数,其最小的旁瓣抑制α与β的关系为:
01102(α-087) α>50
β= 05842(α-21)04+007886(α-21) 21≤α≤50
0 α<21
增加β可使主瓣变宽,旁瓣的幅度降低。
8.契比雪夫窗:w=chebwin(n,r)产生一个n点的契比雪夫窗函数。其傅里叶变换后的旁瓣波纹低于主瓣r个db数。
44 实验内容
1.软件仿真实验:编写并调试MATLAB程序,观察不同窗,不同类型滤波器不同点数等共4种FIR滤波器的h(n),并记录幅频特性和相频特性。
2.硬件实验:用窗函数法设计标准响应的FIR滤波器,在计算机上观察窗函数幅频特性、幅频特性和相频特性,然后下载到实验箱。用示波器观察输入输出波形,测试滤波器的幅频响应特性。
45 MATLAB参考程序和仿真内容
%%
%mode: 模式(1--高通;2--低通;3--带通;4--带阻)
%n: 阶数,加窗的点数为阶数加1
%fp: 高通和低通时指示截止频率,带通和带阻时指示下限频率
%fs: 带通和带阻时指示上限频率
%window:加窗(1--矩形窗;2--三角窗;3--巴特利特窗;4--汉明窗;
% 5--汉宁窗;6--布莱克曼窗;7--凯泽窗;8--契比雪夫窗)
%r: 代表加chebyshev窗的r值和加kaiser窗时的beta值
%sample: 采样率
%h: 返回设计好的FIR滤波器系数
%%
%mode: 模式(1--高通;2--低通;3--带通;4--带阻)
%n: 阶数,加窗的点数为阶数加1
%fp: 高通和低通时指示截止频率,带通和带阻时指示下限频率
%fs:
Matlab中没有DFT函数,有的是fft(快速福利叶变换)
x(n)=[];
n=length(x(n));
y=fft(x(n));
subplot(211);
plot(x(n));
subplot(212);
plot((1:n),y);
其实都一样,你要知道的是你的横坐标有问题。fft后,横坐标的最小间隔实际上是1/L,L是信号的宽度。例题中的 f 除了512,因为做的512个点的fft。如果改成其它的点数的fft,那么横坐标间隔也需要改。总之,结果除了fft带来的误差,应该是差不多的。纵坐标没有太多的意义,因为傅里叶变换前应该有系数的,matlab省略了系数,导致实际大小没有太多意义,但是两个频率对应的幅值比值表示这两个频率成分的占比。例题中两个频率的比例不为1:1是因为fft的误差,你取得t值越多,填零越多,则幅度大小应该接近1:1
所谓信号的谱分析,就是时频域转换,变成数学知识,就是对信号进行傅立叶变换(FT),连续信号与系统的傅立叶变换不便于用计算机进行计算。而在Matlab中的绘图 *** 作,是通过将一些离散的点连接而成。求连续信号的频谱,应用的是离散傅立叶变换(DFT)。
下面这段程序是绘制简单的Sa函数时域和频域图像。
Sa(t)=sin(200t)/200t
对于这个函数我们要说明一点。由傅立叶变换理论知道,若信号持续时间有限长,则其频谱无限宽;若信号频谱有限宽,则其持续时间无限长。因此要对其进行谱分析就必须在时域采样无穷多个点,这又显然不满足DFT变换的要求。从工程实际角度来看,滤除幅度很小的高频成分和截去幅度很小的部分时间信号是允许的,因此这里我们截取(-5≤t≤5)时间段的Sa(t)。下面是程序代码:
Sam
Clear
t0=10; %定义时间长度10s,即(-5≤t≤5)
ts=0001; fs=1/ts; %定义采样周期、采样频率
df=05; %定义频谱分辨率(见说明1)。
t=[-t0/2:ts:t0/2]; %定义时间序列
--------------------------------------------------------------------------------------------------
%定义函数Sa(t):
x=sin(200t);
m=x/(200t);
w=t0/(2ts)+1; %由于sin(t)/t在t=0时Matlab会得出值NaN,所以需要加以修正。
m(w)=1;
---------------------------------------------------------------------------------------------------
�T变换:
[M,mn,dfy]=fftseq(m,ts,df); %对序列m进行DFT,fftseq()为自定义函数,代码在下面。
M=M/fs; %频率缩放
f=[0:dfy:dfylength(mn)-dfy]-fs/2; %定义频率轴,将频谱搬移到0频附近。
----------------------------------------------------------------------------------------------------
%绘图:
pause;
subplot(2,1,1);
plot(t,m);
xlabel('时间');
axis([-015,015,-05,2]);
subplot(2,1,2);
plot(f,abs(fftshift(M))); �tshift见说明4
xlabel('频率');
axis([-50,50,0,002]);
-------------------------------------------------------------------------------------------
%序列的DFT函数
function[M,m,dfy]=fftseq(m,tz,df)
%m:时域序列
%tz:采样周期
�:变换所要求达到的最低频谱分辨率
%M:变换后的频域序列
�y:实际的频谱分辨率
%fz=1/tz;
if nargin==2 %nargin函数表示函数原参数的个
数,即看有没有要求频谱分辨率
n1=0;
else n1=fz/df; %n1表示满足频谱分辨率的最小采样点数
end
n2=length(m); %n2表示满足频域采样定理(见说明2)的最小采样点数。
n=2^(max(nextpow2(n1),nextpow2(n2)));
%n表示实际采样点数,取n1和n2二者中的大值,而且进行DFT变换时采用Matlab自带的FFT变换函数,因此需要n为2的幂次。Nextpow2()见说明3
M=fft(m,n);
dfy=fz/length(M); %实际的频谱分辨率=采样频率fz/实际采样点数length
从图中可以看出,在频率函数的拐角处有细微的波动,这是因为我们一开始说的,截取(-5≤t≤5)时间段做DFT产生的原因。
说明1:频谱分辨力----谱分析中能够分辨的两个频谱分量的最小间隔。N点DFT就是对信号的频谱在[0-fs](fs指采样频率)上的N点等间隔采样,那么频谱分辨率df=fs/N
说明2:频域采样定理----如果序列时域x(n)的长度为M,则只有当频域采样点数N≥M时,才可由频域采样X(k)恢复原序列x(n),否则产生时域混叠现象。
说明3:nextpow2(x)----取大于并最接近x的2次幂
说明4:matlab中的fftshift的功能是零频移到频谱中心,其实就是将一个数组的前一半和后一半对调。具体点说,做n(n为偶数)点FFT不用FFTSHIFT时,第1点对应的模拟频率是零频,第2点是Fs/n,第n/2+1点是Fs/2,第n点是Fs(n-1)/n。用FFTSHIFT后,将Fs/2到Fs(n-1)/n的频点,也就是第n/2+1点到第n点搬移到第1到第n/2点,将第1点到第n/2点搬移到第n/2+1到第n点。所以原来的第1点(模拟频率是零频)搬移到第n/2+1点。说晕了吧,看下面两幅图就明白了,前一个是没有进行fftshift变换的,后一个是进行fftshift变换之后的。
Matlab自己带有傅立叶变换的算法,你也可以自己编一个,按照公式就可以了。看看算法吧:
>
以上就是关于加 hanning窗 做 FFT 程序 怎么写 用matlab怎么写这个全部的内容,包括:加 hanning窗 做 FFT 程序 怎么写 用matlab怎么写这个、这个matlab程序怎么编(设计低通滤波器)、matlab完成如下序列DFT变换等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)