Dijkstra算法是寻找最短路径的一种搜索算法,由荷兰科学家提出。
算法描述:通过为每个节点保留目前为止所找到的从s到e的最短路径。为了记录最佳路径轨迹,记录路径上每个节点的前趋,通过回溯法找出最短路径轨迹。
在网上搜索一些版本的Matlab实现方法,感觉都有些毛病。经过修改,得到比较好的效果。
[cpp] view plain copy
function [ distance path] = Dijk( W,st,e )
%DIJK Summary of this function goes here
% W 权值矩阵 st 搜索的起点 e 搜索的终点
n=length(W);%节点数
D = W(st,:);
visit= ones(1:n); visit(st)=0;
parent = zeros(1,n);%记录每个节点的上一个节点
path =[];
for i=1:n-1
temp = [];
%从起点出发,找最短距离的下一个点,每次不会重复原来的轨迹,设置visit判断节点是否访问
for j=1:n
if visit(j)
temp =[temp D(j)];
else
temp =[temp inf];
end
end
[value,index] = min(temp);
visit(index) = 0;
%更新 如果经过index节点,从起点到每个节点的路径长度更小,则更新,记录前趋节点,方便后面回溯循迹
for k=1:n
if D(k)>D(index)+W(index,k)
D(k) = D(index)+W(index,k);
parent(k) = index;
end
end
end
distance = D(e);%最短距离
%回溯法 从尾部往前寻找搜索路径
t = e;
while t~=st && t>0
path =[t,path];
p=parent(t);t=p;
end
path =[st,path];%最短路径
end
测试:
测试用例1
[cpp] view plain copy
W=[0 50 inf 40 25 10
50 0 15 20 inf 25
inf 15 0 10 20 inf
40 20 10 0 10 25
25 inf 20 10 0 55
10 25 inf 25 55 0];
[cpp] view plain copy
[cpp] view plain copy
[distance,path]=Dijk(W,1,4);
>> distance
distance =
35
>> path
path =
1 6 4
从节点1到节点4最短距离路径为1-->6-->4, 最短距离为35
分类: 教育/科学 >> 学习帮助
问题描述:
这是我们的作业,可我不太会做,想找高手帮忙设计出这个程序。
有图,有数组,都是我自己弄的。
请好心人与我联系。
急!
谢谢!
先悬赏100,并补献全部积分,若成功还可有额外补助~
请高手速与我联系!
解析:
以下
输入时,将s,t,x,y,z五个点按照1,2,3,4,5起别名,输入格式按照下图例所示
当提示Please enter the vertex where Dijkstra algorithm starts:时输入算法的起始点
比如计算结果v1v4v2表示从点1到点2经过1,4,2为最短路径
Dijkstra算法的完整实现版本,算法的源代码
/ Dijkstrac
Copyright (c) 2002, 2006 by ctu_85
All Rights Reserved
/
#include "stdioh"
#include "malloch"
#define maxium 32767
#define maxver 9 /defines the max number of vertexs which the programm can handle/
#define OK 1
struct Point
{
char vertex[3];
struct Link work;
struct Point next;
};
struct Link
{
char vertex[3];
int value;
struct Link next;
};
struct Table /the workbannch of the algorithm/
{
int cost;
int Known;
char vertex[3];
char path[3];
struct Table next;
};
int Dijkstra(struct Point ,struct Table );
int PrintTable(int,struct Table );
int PrintPath(int,struct Table ,struct Table );
struct Table CreateTable(int,int);
struct Point FindSmallest(struct Table ,struct Point );/Find the vertex which has the allest value reside in the table/
int main()
{
int i,j,num,temp,val;
char c;
struct Point poinpre,poinhead,poin;
struct Link linpre,linhead,lin;
struct Table tabhead;
poinpre=poinhead=poin=(struct Point )malloc(sizeof(struct Point));
poin->next=NULL;
poin->work=NULL;
restart:
printf("Notice:if you wanna to input a vertex,you must use the format of number!\n");
printf("Please input the number of points:\n");
scanf("%d",&num);
if(num>maxver||num<1||num%1!=0)
{
printf("\nNumber of points exception!");
goto restart;
}
for(i=0;i<num;i++)
{
printf("Please input the points next to point %d,end with 0:\n",i+1);
poin=(struct Point )malloc(sizeof(struct Point));
poinpre->next=poin;
poin->vertex[0]='v';
poin->vertex[1]='0'+i+1;
poin->vertex[2]='\0';
linpre=lin=poin->work;
linpre->next=NULL;
for(j=0;j<num-1;j++)
{
printf("The number of the %d th vertex linked to vertex %d:",j+1,i+1);
scanf("%d",&temp);
if(temp==0)
{
lin->next=NULL;
break;
}
else
{
lin=(struct Link )malloc(sizeof(struct Link));
linpre->next=lin;
lin->vertex[0]='v';
lin->vertex[1]='0'+temp;
lin->vertex[2]='\0';
printf("Please input the value beixt %d th point towards %d th point:",i+1,temp);
scanf("%d",&val);
lin->value=val;
linpre=linpre->next;
lin->next=NULL;
}
}
poinpre=poinpre->next;
poin->next=NULL;
}
printf("Please enter the vertex where Dijkstra algorithm starts:\n");
scanf("%d",&temp);
tabhead=CreateTable(temp,num);
Dijkstra(poinhead,tabhead);
PrintTable(temp,tabhead);
return OK;
}
struct Table CreateTable(int vertex,int total)
{
struct Table head,pre,p;
int i;
head=pre=p=(struct Table )malloc(sizeof(struct Table));
p->next=NULL;
for(i=0;i<total;i++)
{
p=(struct Table )malloc(sizeof(struct Table));
pre->next=p;
if(i+1==vertex)
{
p->vertex[0]='v';
p->vertex[1]='0'+i+1;
p->vertex[2]='\0';
p->cost=0;
p->Known=0;
}
else
{
p->vertex[0]='v';
p->vertex[1]='0'+i+1;
p->vertex[2]='\0';
p->cost=maxium;
p->Known=0;
}
p->next=NULL;
pre=pre->next;
}
return head;
}
int Dijkstra(struct Point p1,struct Table p2) / Core of the programm/
{
int costs;
char temp;
struct Point poinhead=p1,now;
struct Link linna;
struct Table tabhead=p2,searc,result;
while(1)
{
now=FindSmallest(tabhead,poinhead);
if(now==NULL)
break;
result=p2;
result=result->next;
while(result!=NULL)
{
if(result->vertex[1]==now->vertex[1])
break;
else
result=result->next;
}
linna=now->work->next;
while(linna!=NULL) / update all the vertexs linked to the signed vertex/
{
temp=linna->vertex[1];
searc=tabhead->next;
while(searc!=NULL)
{
if(searc->vertex[1]==temp)/find the vertex linked to the signed vertex in the table and update/
{
if((result->cost+linna->value)<searc->cost)
{
searc->cost=result->cost+linna->value;/set the new value/
searc->path[0]='v';
searc->path[1]=now->vertex[1];
searc->path[2]='\0';
}
break;
}
else
searc=searc->next;
}
linna=linna->next;
}
}
return 1;
}
struct Point FindSmallest(struct Table head,struct Point poinhead)
{
struct Point result;
struct Table temp;
int min=maxium,status=0;
head=head->next;
poinhead=poinhead->next;
while(head!=NULL)
{
if(!head->Known&&head->cost<min)
{
min=head->cost;
result=poinhead;
temp=head;
status=1;
}
head=head->next;
poinhead=poinhead->next;
}
if(status)
{
temp->Known=1;
return result;
}
else
return NULL;
}
int PrintTable(int start,struct Table head)
{
struct Table begin=head;
head=head->next;
while(head!=NULL)
{
if((head->vertex[1]-'0')!=start)
PrintPath(start,head,begin);
head=head->next;
}
return OK;
}
int PrintPath(int start,struct Table head,struct Table begin)
{
struct Table temp=begin->next,p,t;
p=head;
t=begin;
if((p->vertex[1]-'0')!=start&&p!=NULL)
{
while(temp->vertex[1]!=p->path[1]&&temp!=NULL)
temp=temp->next;
PrintPath(start,temp,t);
printf("%s",p->vertex);
}
else
if(p!=NULL)
printf("\n%s",p->vertex);
return OK;
}
Matlab解法:
function [dist,path] = dijkstra(nodes,segments,start_id,finish_id)
%DIJKSTRA Calculates the shortest distance and path between points on a map
% using Dijkstra's Shortest Path Algorithm
%
% [DIST, PATH] = DIJKSTRA(NODES, SEGMENTS, SID, FID)
% Calculates the shortest distance and path between start and finish nodes SID and FID
%
% [DIST, PATH] = DIJKSTRA(NODES, SEGMENTS, SID)
% Calculates the shortest distances and paths from the starting node SID to all
% other nodes in the map
%
% Note:
% DIJKSTRA is set up so that an example is created if no inputs are provided,
% but ignores the example and just processes the inputs if they are given
%
% Inputs:
% NODES should be an Nx3 or Nx4 matrix with the format [ID X Y] or [ID X Y Z]
% where ID is an integer, and X, Y, Z are cartesian position coordinates)
% SEGMENTS should be an Mx3 matrix with the format [ID N1 N2]
% where ID is an integer, and N1, N2 correspond to node IDs from NODES list
% such that there is an [undirected] edge/segment between node N1 and node N2
% SID should be an integer in the node ID list corresponding with the starting node
% FID (optional) should be an integer in the node ID list corresponding with the finish
%
% Outputs:
% DIST is the shortest Euclidean distance
% If FID was specified, DIST will be a 1x1 double representing the shortest
% Euclidean distance between SID and FID along the map segments DIST will have
% a value of INF if there are no segments connecting SID and FID
% If FID was not specified, DIST will be a 1xN vector representing the shortest
% Euclidean distance between SID and all other nodes on the map DIST will have
% a value of INF for any nodes that cannot be reached along segments of the map
% PATH is a list of nodes containing the shortest route
% If FID was specified, PATH will be a 1xP vector of node IDs from SID to FID
% NAN will be returned if there are no segments connecting SID to FID
% If FID was not specified, PATH will be a 1xN cell of vectors representing the
% shortest route from SID to all other nodes on the map PATH will have a value
% of NAN for any nodes that cannot be reached along the segments of the map
%
% Example:
% dijkstra; % calculates shortest path and distance between two nodes
% % on a map of randomly generated nodes and segments
%
% Example:
% nodes = [(1:10); 100rand(2,10)]';
% segments = [(1:17); floor(1:05:9); ceil(2:05:10)]';
% figure; plot(nodes(:,2), nodes(:,3),'k');
% hold on;
% for s = 1:17
% if (s <= 10) text(nodes(s,2),nodes(s,3),[' ' num2str(s)]); end
% plot(nodes(segments(s,2:3)',2),nodes(segments(s,2:3)',3),'k');
% end
% [d, p] = dijkstra(nodes, segments, 1, 10)
% for n = 2:length(p)
% plot(nodes(p(n-1:n),2),nodes(p(n-1:n),3),'r-','linewidth',2);
% end
% hold off;
%
% Author: Joseph Kirk
% Email: jdkirk630 at gmail dot com
% Release: 13
% Release Date: 5/18/07
if (nargin < 3) % SETUP
% (GENERATE RANDOM EXAMPLE OF NODES AND SEGMENTS IF NOT GIVEN AS INPUTS)
% Create a random set of nodes/vertices,and connect some of them with
% edges/segments Then graph the resulting map
num_nodes = 40; L = 100; max_seg_length = 30; ids = (1:num_nodes)';
nodes = [ids Lrand(num_nodes,2)]; % create random nodes
h = figure; plot(nodes(:,2),nodes(:,3),'k') % plot the nodes
text(nodes(num_nodes,2),nodes(num_nodes,3),
[' ' num2str(ids(num_nodes))],'Color','b','FontWeight','b')
hold on
num_segs = 0; segments = zeros(num_nodes(num_nodes-1)/2,3);
for i = 1:num_nodes-1 % create edges between some of the nodes
text(nodes(i,2),nodes(i,3),[' ' num2str(ids(i))],'Color','b','FontWeight','b')
for j = i+1:num_nodes
d = sqrt(sum((nodes(i,2:3) - nodes(j,2:3))^2));
if and(d < max_seg_length,rand < 06)
plot([nodes(i,2) nodes(j,2)],[nodes(i,3) nodes(j,3)],'k-')
% add this link to the segments list
num_segs = num_segs + 1;
segments(num_segs,:) = [num_segs nodes(i,1) nodes(j,1)];
end
end
end
segments(num_segs+1:num_nodes(num_nodes-1)/2,:) = [];
axis([0 L 0 L])
% Calculate Shortest Path Using Dijkstra's Algorithm
% Get random starting/ending nodes,compute the shortest distance and path
start_id = ceil(num_nodesrand); disp(['start id = ' num2str(start_id)]);
finish_id = ceil(num_nodesrand); disp(['finish id = ' num2str(finish_id)]);
[distance,path] = dijkstra(nodes,segments,start_id,finish_id);
disp(['distance = ' num2str(distance)]); disp(['path = [' num2str(path) ']']);
% If a Shortest Path exists,Plot it on the Map
figure(h)
for k = 2:length(path)
m = find(nodes(:,1) == path(k-1));
n = find(nodes(:,1) == path(k));
plot([nodes(m,2) nodes(n,2)],[nodes(m,3) nodes(n,3)],'ro-','LineWidth',2);
end
title(['Shortest Distance from ' num2str(start_id) ' to '
num2str(finish_id) ' = ' num2str(distance)])
hold off
else %--------------------------------------------------------------------------
% MAIN FUNCTION - DIJKSTRA'S ALGORITHM
% initializations
node_ids = nodes(:,1);
[num_map_pts,cols] = size(nodes);
table = sparse(num_map_pts,2);
shortest_distance = Inf(num_map_pts,1);
settled = zeros(num_map_pts,1);
path = num2cell(NaN(num_map_pts,1));
col = 2;
pidx = find(start_id == node_ids);
shortest_distance(pidx) = 0;
table(pidx,col) = 0;
settled(pidx) = 1;
path(pidx) = {start_id};
if (nargin < 4) % compute shortest path for all nodes
while_cmd = 'sum(~settled) > 0';
else % terminate algorithm early
while_cmd = 'settled(zz) == 0';
zz = find(finish_id == node_ids);
end
while eval(while_cmd)
% update the table
table(:,col-1) = table(:,col);
table(pidx,col) = 0;
% find neighboring nodes in the segments list
neighbor_ids = [segments(node_ids(pidx) == segments(:,2),3);
segments(node_ids(pidx) == segments(:,3),2)];
% calculate the distances to the neighboring nodes and keep track of the paths
for k = 1:length(neighbor_ids)
cidx = find(neighbor_ids(k) == node_ids);
if ~settled(cidx)
d = sqrt(sum((nodes(pidx,2:cols) - nodes(cidx,2:cols))^2));
if (table(cidx,col-1) == 0) ||
(table(cidx,col-1) > (table(pidx,col-1) + d))
table(cidx,col) = table(pidx,col-1) + d;
tmp_path = path(pidx);
path(cidx) = {[tmp_path{1} neighbor_ids(k)]};
else
table(cidx,col) = table(cidx,col-1);
end
end
end
% find the minimum non-zero value in the table and save it
nidx = find(table(:,col));
ndx = find(table(nidx,col) == min(table(nidx,col)));
if isempty(ndx)
break
else
pidx = nidx(ndx(1));
shortest_distance(pidx) = table(pidx,col);
settled(pidx) = 1;
end
end
if (nargin < 4) % return the distance and path arrays for all of the nodes
dist = shortest_distance';
path = path';
else % return the distance and path for the ending node
dist = shortest_distance(zz);
path = path(zz);
path = path{1};
end
end
Dijkstra算法的思想是DP +贪婪。
每次寻找最近的点,扩大和更新的状态
为(i = 1; <N; + +)/ /扩展N-1
{
T =无穷大;
K = 1;
为(J = 1,J <N,J + +)/ /这里是为了找到最近的点,D最小< (/([J])&&(D [J] T [K]))
{
吨= D [J];
K =
}
[K] = 1 ;/ / k点加入的S
(J = 1,J <N,J + +)
((! [J])&&(D [J]>的D [k] + W [K] [J]))/ /更新状态基于动态规划
{
D [J] =的D [k] + W [K] [J];
P [J] = K;
}
>}
不知道LZ在哪里目前还不清楚
给定 加权有向图 G=(V,E,W),每条边的权值w为 非负数 ,表示两个顶点间的距离。
源点s∈V。
求:从s出发到其他各个顶点的最短路径。
如上图所示,以1为源点,计算到其余各个顶点的最短距离(我已用红线标出)。下面列出了最终解:
S集合 :当从s到x(x ∈V )的最短路径找到时,则x ∈S。当所有顶点都进入S集合时,算法结束。
初始:S={s},当S=V时算法结束。
从s到u相对于S的最短路径 :指从s到u且仅经过S中顶点的最短路径。
dist[u]:从s到u相对于S的最短路径长度
short[u]:从s到u最短路径的长度(算法最终解)
dist[u] ≥ short[u]
Dijkstra算法采用贪心算法模式,算法过程就是通过计算dist[u],不断扩充S集合,同时dist[u]会不断优化改善,直到dist[u] = short[u],并将其放到S中,当所有顶点都放入S集合时,算法结束。
输入:加权有向图G=(V,E,W)
V={1,2,…,n}, s=1
输出:从s到每个顶点的最短路径
输入:G=(V,E,W),源点1
V={1,2,3,4,5,6}
初始S集合只有1,计算直接从1能到达的顶点的距离,其他不能从1号顶点直接到达的顶点都记为无穷大。此时从dist[u]里找出最短距离的顶点(6号),并将其放进S集合。
S={1}
dist[1] = 0
dist[2] = 10
dist[6 ] = 3
dist[3] = ∞
dist[4] = ∞
dist[5] = ∞
当把6号顶点放进S集合后,经由6号顶点出发到达的顶点的最短距离可能会被优化更新,因为该算法的思想很“贪心”,谁更短我要谁!比如1->6->2要比1->2距离更短,所以dist[2]被更新为5,从专业术语上讲,这个“更新”过程叫做松弛,其他点同理。然后从dist[u]里找出最短的路径的那个顶点(5号),并放进S集合里。
S={1,6}
dist[1] = 0
dist[6] = 3
dist[2] = 5
dist[4] = 9
dist[5] = 4
dist[3] = ∞
后面的 *** 作步骤其实就是重复上面的 *** 作。即当S集合里有个新的顶点后,就可能会更新其他点的最短距离,更新一遍后,找出当前最短距离的dist[u],并将该顶点放进S集合。后面不重复阐述。
S={1,6,5}
dist[1] = 0
dist[6] = 3
dist[5] = 4
dist[2] = 5
dist[4] = 9
dist[3] = ∞
S={1,6,5,2}
dist[1] = 0
dist[6] = 3
dist[5] = 4
dist[2] = 5
dist[4] = 9
dist[3] = 12
S={1,6,5,2,4}
dist[1] = 0
dist[6] = 3
dist[5] = 4
dist[2] = 5
dist[4] = 9
dist[3] = 12
S={1,6,5,2,4,3}
dist[1] = 0
dist[6] = 3
dist[5] = 4
dist[2] = 5
dist[4] = 9
dist[3] = 12
当有向图中的所有顶点都进入了S集合后,算法结束,此时的dist[u]的值其实就是最初我们找出的那个最终解short[u],所以,算法结束时,dist[u]=short[u],得到最终解。
以上就是关于怎样用matlab编程实现Dijkstra算法全部的内容,包括:怎样用matlab编程实现Dijkstra算法、怎样用DIJKSTRA算法设计最短路径、Dijkstra算法matlab如何应用等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)