在大数据分析技术是多种技术和加工方法的组合。使它们有效的原因是企业集体使用它们以获得战略管理和实施的相关结果。
尽管投资热情高涨,而且雄心勃勃地利用数据的力量来改造企业,但成功的结果却各不相同。组织仍在努力打造所谓的“数据驱动”文化。报告启动该项目的高管中,只有402%的报告成功。大型转型需要时间,而绝大多数公司都渴望实现“数据驱动”,但只有极少数公司意识到了这一雄心。文化转型很少在一夜之间发生。
在大数据发展的这一点上,大多数公司面临的挑战与技术无关。采纳的最大障碍与文化挑战有关:组织一致性,抵抗或缺乏理解以及变更管理。
以下是支持企业大数据的一些关键技术:
1)预测分析
作为企业规避决策风险的主要工具之一,预测分析可以帮助企业。预测分析硬件和软件解决方案可以通过处理大数据来用于发现,评估和部署预测方案。这样的数据可以帮助公司为即将发生的事情做好准备,并通过分析和理解问题来帮助解决问题。
2)NoSQL数据库
这些数据库可用于可扩展数量的存储节点上的可靠,高效的数据管理。NoSQL数据库将数据存储为关系数据库表,JSON文档或键值对。
3)知识发现工具
这些工具使企业可以挖掘存储在多个源上的大数据(结构化和非结构化)。这些源可以是不同的文件系统,API,DBMS或类似平台。借助搜索和知识发现工具,企业可以隔离和利用信息以使其受益。
4)流分析
有时,组织需要处理的数据可以存储在多个平台上并以多种格式存储。流分析软件对于过滤,聚合和分析此类大数据非常有用。流分析还允许连接到外部数据源,并将其集成到应用程序流中。
5)内存中的数据结构
这项技术有助于在系统资源(例如动态RAM,闪存或固态存储驱动器)之间分配大量数据。依次启用低延迟访问和连接节点上的大数据处理。
6)分布式存储
分布式文件存储包含复制数据,是一种应对独立节点故障以及大数据源丢失或损坏的方法。有时,还复制数据以在大型计算机网络上实现低延迟的快速访问。这些通常是非关系数据库。
7)数据虚拟化
它使应用程序能够检索数据而无需实施技术限制,例如数据格式,数据的物理位置等。Apache Hadoop和其他分布式数据存储用于将其实时或接近实时地访问存储在各种平台上的数据,数据。虚拟化是最常用的大数据技术之一。
8)数据整合
对于大多数处理大数据的组织而言,一个关键的运营挑战是以对客户交付品有用的方式处理TB级数据。数据集成工具使企业可以跨多个大数据解决方案简化数据,例如Amazon EMR,Apache Hive,Apache Pig,Apache Spark,Hadoop,MapReduce,MongoDB和Couchbase。
9)数据预处理
这些软件解决方案用于将数据处理为一致的格式,并可以用于进一步分析。数据准备工具通过格式化和清理非结构化数据集来加速数据共享过程。数据预处理的局限性在于它的所有任务都无法自动化并且需要人工监督,这可能既繁琐又耗时。
10)数据质量
大数据处理的一个重要参数是数据质量。数据质量软件可以利用并行处理进行大数据集的清理和充实。这些软件被广泛用于从大数据处理中获得一致且可靠的输出。
总而言之,大数据已被用于提高运营效率,并且基于最新的最新信息做出明智决策的能力正迅速成为主流规范。
毫无疑问,大数据将继续在全球许多不同行业中发挥重要作用。它绝对可以为企业组织创造奇迹。为了获得更多收益,对员工进行大数据管理培训非常重要。正确管理大数据,您的业务将更加高效。
企业使用大数据分析的10种关键技术
大数据分析的原理和潜力
如何成为大数据分析师进阶指南
大数据分析与机器学习之间的区别与联系
大数据分析技术的发展趋势
大数据分析技术应用领域有哪些
如何学习大数据分析
大数据分析太难了学的想哭
哪些人适合学大数据分析
存款作为银行一项主要负债,是银行发放贷款,获取利差收入的基础。对银行的审计过程中,存款和贷款业务审计是一项重要内容,利用数据库查询技术,关联分析海量的存款、贷款交易数据,从而发现风险较大、可能存在违纪违规问题的交易,进一步关联信贷和票据档案资料,为延伸审计提供可靠的疑点信息,提高审计效率和质量。一、整理存贷款业务中间数据所需要的数据来源于银行的核心管理系统和信贷系统。各银行信息系统的存储和处理方式不一定相同,但主要关键表的功能和结构是大体一致的。根据审计关注的内容和重点,下载数据前应先了解银行的核心及信贷管理系统的主要数据结构,重点下载存贷款和票据业务审计所需的有关数据表。如存款部分的对私活期分户账、对私活期明细账、对公存款分户账、对公存款明细账、现金收付登记簿、登记账户开销表;贷款部分的贷款分户账、贷款明细账;票据部分的承兑汇票签发表、贴现表等数据,并对其进行必要的关联和标准化处理,形成审计中间表。二、存款业务合规、风险性分析按照账户实名制和结算账户管理办法、反洗钱交易管理办法等规定的要求,对存款交易数据进行分析筛选,获取延伸的疑点信息,常用的思路方法:(一)对个人账户实名制的审查。通过对对私账户证件号码的审查,看有无身份z件记录,或是否证件号码记录有误,判断是否严格执行个人账户实名制的规定。方法是在对私活期分户账、对私活期明细账表中筛选所有证件号码位数不等于15位或18位的记录,验证身份z号码中出生年月是否合理,并可以使用身份z号码校验程序来验证其有效性。(二)是大额取现超权限的审查。把私活期明细账、对公存款明细账与现金收付登记簿进行关联,筛选出所有交易金额大于一定标准,且业务交易类型是“付现的记录,对照现金管理条例进行延伸审计。(三)对单位账户管理和使用进行审查。主要思路是检查是否为单位开设多个基本户、是否在同一家支行同时开设基本户和一般户、一般户是否有取现交易、一般户开户三日内是否发生过付款业务、临时户是否超期限(2年)等违反《人民币银行结算账户管理办法》的行为,方法是以账号为关键字段,关联对公存款分户账、对公存款明细账、现金收付登记簿等数据表,按照规定对账户类型和交易类型进行筛选,查找出可疑的交易记录,并调取传票和原始单据进行进一步核查。(四)公款私存的审查。主要是筛选对公账户与对私账户之间发生的交易,关注发生额大的交易和行政事业单位账户的转账付款情况,需要将对公存款明细账与对私活期明细账关联起来,有时候需要引入交易流水数据以便于结合。在取得交易记录的基础上,调阅传票和原始单据,对可疑数据要到单位进行延伸。(五)存款异常变动审查分析。根据明细账的交易记录,总体分析某些账户的资金进出情况,比如查找短期内资金进出频繁且金额大的账户,或短时间内资金转出后即停止使用的账户,或与个人存款账户往来频繁且交易量巨大的账户,进一步延伸分析是否存在洗钱行为。三、关联贷款数据分析信贷业务合规性根据信贷发放必须要在本行开设存款账户的规定,主要是关联贷款发放数据和存款数据,分析信贷资金的使用情况。(一)发放贷款虚增存款分析。结合贷款发放数据,关联贷款分户账、贷款明细账和相应的存款明细账,分析贷款资金的转入和转出情况。检查有无为完成存款、贷款任务,月末向客户发放贷款、下月初收回贷款,贷款资金存放在银行对公存款账户,造成月末存款、贷款余额虚增的现象。(二)贷款资金的用途分析。查看贷款转入存款账户后,该存款账户的具体付款情况,主要是关注付款的方式,对取现的要重点延伸;对转账付款的,继续跟踪对方账户的性质和交易情况,看是否符合贷款合同上约定的受托支付要求,是否将新发放贷款用于偿还前笔贷款或者用于签发银行承兑汇票的保证金。(三)票据和存款业务的关联分析。结合存款明细账和承兑汇票签发、贴现数据,分析签发手续费和敞口、垫款手续费的收入入账情况,是否及时足额缴付;分析签发时保证金是否及时足额存入保证金存款账户,并且在兑付之前没有转出;进一步分析贴现资金的走向,关注其是否有偿还贷款或者滚动开票等现象。(吴艳山)
目前很多制造型企业拥有了MES、ERP、SPC等业务系统,获得了大量的数据。然而在跨工厂、跨系统的异构数据中,如何找到生产各个环节的规律和异常,如何获得优化见解,是制造型企业面临的关键挑战。通过数据分析提升产品质量,提高产品合格率、成品率则是企业发展的下一步抓手。
一、制造业质量数据分析遇到的难点:
1、产品质量缺陷追溯周期长,找寻规律较慢。
2、数据跨工厂/跨车间/跨业务系统,只做数据展示,无法关联分析。
3、数据不全,数据准确性不稳定,数据分析决策支持功能弱。
4、很难发现经验已知之外的影响产品质量的因素。
二、生产质量分析方案设计特点
将当代计算机科学、工业统计与大数据技术、行业质量管理及持续改进最佳实践完美融合、洞察质量与流程数据,从而提高效率、降低成本、预测未知、科学决策,提高持续盈利能力。可以实时质量风险预警平台、质量大数据分析平台、智能质量报告平台、自动化分析程序及报告。
三、方案实施收益
1、建立统一的数据采集和管理平台,极大降低数据分析中数据收集和整理的时间。
2、打破多个业务系统(SAP、MES、手工台账等)的数据孤岛,将数据集中到一个平台,完善数据采集机制、建立数据标准、提升数据质量。
3、创建产品质量的主题分析应用,找到产品质量问题的根因。包括:产品全生命周期的分析、质量和缺陷走势分析、生产过程(人、设备、工艺等)分析、客诉与订单交付分析、设备故障和备件分析、质量预测分析等。
4、分析报表通过大屏、PC端和移动端进行展示,并以一系列标准格式自动分发报表。
5、为客户提供企业BI项目整体规划的咨询方案:质量分析及预测、运营分析及预测、高层管理驾驶舱。
四、方案是如何落地实施的
1、工序质量分析-指标分析
实现合格率、成品率、成功率、产出合格重量、产出量、投入量、缺陷重量、单缺陷率等品管核心关注指标跨工序的全局联动分析。
2、工序质量分析-SPC过程能力分析
系统界面及报告系统提供多种图形,包括:单值图(运行图)、以及直方图、帕累托图、控制图(均值极差图、均值标准差图、单值移动极差图)、箱形图、C值评估图、质控图、皮尔森图等满足日常统计分析。
3、工序质量分析-假设检验
改善效果的验证;潜在原因的确认;不同供应商的质量可靠性水平的对比等。
4、SPC与质量大数据分析 -方差分析
具有强大方差分析能力,并能生成专业化的、易于解读的方差分析报告。支持的方差分析模型有:单因子方差分析、多因素方差分析设计、混合效应模型、分级嵌套模型、失衡数据。
5、工序质量-SPC与质量大数据分析
6、异常质量追溯
找到质量异常产品在生产过程中各工序的生产时间、工序的工艺参数,机台记录的备注(生产异常说明)、交接班的备注(生产异常说明)、各工序的评审记录、品检信息、工器具信息、辅材信息、停机记录、班厂量、设备运维状况等信息,并判断是否出现异常。
7、制造过程质量分析与控制-质量预测与预警
五、生产质量分析方案架构:
其中主要模块介绍如下:
1)全方位动态门户
基于最新J2EE软件框架形成的全方位动态门户技术,使得企业用户完全摆脱对程序人员的依赖:
WEB/WAP、话音/视频、短信/彩信、IM/邮件全方位互动。
在后台软件系统业务内容/数据新增或更新后,WEB内容界面将自动被更新
简单WEB内容日常跟新采用文档上传办法完成
话音短信互动等业务流程采用下拉表单方式配置完成
2)全程销售管理支撑系统
市场策划--拟推产品、价格、目标客户、地理、时间等要素组合
市场推广--广告投放现场活动及其监控
销售过程管理--客户接触意向漏洞管理
订单定价管理--自动生成订单及其价格
售后反馈--完成整个销售环节的闭环
权限管理--对下属直营和加盟渠道的权限管理
3)客户关系管理支撑系统
基本维度---属于公司何类何级别客户
销售维度—客户被营销的次数及内容,避免过度营销
满意度维度—客户被关怀次数及内容
竞争维度—被竞争对手营销及服务情况
订单维度—使用过本公司相关业务的情况
信用维度—本公司及第三方xyk信息
产品资源维度—是否被本公司现有或将来产品资源覆盖
关联分析视图—产生各维度关联分析视图
4)产品资源综合管理支撑系统
360度产品运营视图--客户使用分布及满意度、价格阶梯分布情况
内部规则管理—内部其他产品的兼容或冲突规则管理
产品数目管理—产品进销存情况管理
关联分析视图—产生各维度关联分析视图
产品生命周期管理—根据各要素评估产品生命周期模型
5)外部接口系统
和上游供货商—供应链接口
和物流公司—物流调配接口
和支付公司—支付接口
和其他合作伙伴—标准的基于webservice的标准通用接口
学号:17020110019 姓名:高少魁
嵌牛导读关联规则挖掘算法是数据挖掘中的一种常用算法,用于发现隐藏在大型数据集中令人感兴趣的频繁出现的模式、关联和相关性。这里将对该算法进行简单的介绍,之后通过Apriori算法作为实例演示算法执行结果。
嵌牛鼻子数据挖掘 关联规则挖掘 python
嵌牛正文
一、算法原理
1、基本概念
关联规则用于发现隐藏在大型数据集中令人感兴趣的频繁出现的模式、关联和相关性。 而 Apriori算法则是经典的挖掘频繁项集的关联规则算法,它通过层层迭代来寻找频繁项集,最后输出关联规则:首先扫描数据集,得到 1-频繁项集,记为 L1,通过合并 L1得到 2-频繁项集 L2,再通过 L2找到 L3,如此层层迭代,直到找不到频繁项集为止。
在Apriori算法中,定义了如下几个概念:
⚫ 项与项集 :设 I={i1,i2,…,im}是由 m个不同项构成的集合,其中的每个 ik(k=1,2,…,m)被称为一个项 (Item),项的集合 I被称为项集和,即项集。在实验中,每一条购物记录可以被看做 一个项集,用户购买的某个商品即为一个项。
⚫ 事务与事务集:事务 T是项集 I的一个子集,而事务的全体被称为事务集。
⚫ 关联规则:形如 A=>B的表达式,其中, A和 B都属于项集 I,且 A与 B不相交。
⚫ 支持度:定义如下 support(A=>B) = P(A B),即 A和 B所含的项在事务集中同时出现的概率。
⚫ 置信度:定义如下 confidence(A⇒B)=support(A⇒B)/support(A)=P(A B)/P(A)=P(B|A),即如果事务包含 A,则事务中同时出现 B的概率。
⚫ 频繁项集:如果项集 I的支持度满足事先定义好的最小支持度阈值(即 I的出现频度大于相应的最小出现频度阈值),则 I是频繁项集。
⚫ 强关联规则:满足最小支持度和最小置信度的关联规则,即待挖掘的关联规则。
根据以上概念,要实现关联规则的挖掘,首先要找到所有的频繁项集,之后找出强关联规则(即通过多次扫描数据集,找出频繁集,然后产生关联规则)。
2、挖掘频繁项集
在该步骤中有两个较为重要的部分 :连接和修剪。连接步骤即使用k-1频繁项集,通过连接得到 k-候选项集,并且只有相差一个项的项集才能进行连接,如 {A,B}和 {B,C}连接成为 {A,B,C}。修剪步骤基于一个性质:一个 k-项集,如果它的一个 k-1项集(子集)不是频繁的,那么它本身也不可能是频繁的。 因此可以基于这个性质,通过判断先验性质来对候选集进行修剪。
3、产生关联规则
经过连接和修剪之后,即找到了所有的频繁项集,此时可以在此基础上产生关联规则,步骤如下
(1)对于每个频繁项集 l,产生 l的所有非空子集(这些非空子集一定是频繁项集);
(2)对于 l的每一个非空子集 x,计算 confidence(x => (l-x)),如果 confidence(x => (l-x)) confmin,那么规则 x => (l-x)”成立。
二、算法设计
1、数据集
通过语句 import xlrd导入相关的库来进行数据的读取 。数据内容为十条购物记录 ,每条购物记录有若干个商品,表示某个顾客的购买记录 ,如图
对于数据加载部分 使用了 xlrd库中的函数 open_workbook来 打开一个表格文件,使用sheet_by_index函数得到一个工作表, row_values函数即可读取表格中的内容。由于每个购物记录的商品数不一定相同,导致读取的内容含有空格 (’ ’),因此对数据进行删减以得到紧凑的数据 ,最终读取数据的结果以列表的形式返回。
2、连接
对于连接部分,主要目标是根据已有的k-1频繁项集生成 k-候选频繁项集。算法步骤为:首先将项集中的项按照字典顺序排序,之后将 k-1项集中两个项作比较,如果两个项集中前 k-2个项是相同的,则可以通过或运算(|)将它们连接起来。
3、修剪
修剪 *** 作主要使用一个判断函数,通过传入连接 *** 作后的项集和之前的k-1频繁项集,对新的项集中的每一个项的补集进行判断,如果该补集不是 k-1频繁项集的子集,则证明新的项集不满足先验性质,即一个频繁项集的所有非空子集一定是频繁的 ,否则就满足先验形式。返回布尔类型的参数来供调用它的函数作判断。
经过连接和修剪步骤之后,项基要成为频繁项集还必须满足最小支持度的条件,笔者设计了generateFrequentItems函数来对连接、修剪后产生的 k-候选项集进行判断,通过遍历数据集,计算其支持度,满足最小支持度的项集即是 一个频繁项集,可将其返回。
以上,经过不断的遍历、连接、修剪、删除,可将得到的所有结果以列表形式返回。笔者还设计了字典类型的变量 support_data,以得到某个频繁项集及其支持度 。
4、挖掘关联规则
generateRules函数用来挖掘关联规则,通过传入 最小置信度、 频繁项集及其 支持度来生成规则 。根据定理:对于频繁项集 l的每一个非空子集 x,计算 confidence(x => (l-x)),如果 confidence(x => (l-x)) confmin,那么规则 x => (l-x)”成立,因此,该函数重点在扫描频繁项集,得到每一个子集,并计算置信度,当置信度满足条件(即大于等于最小置信度)时,生成一条规则。在函数中,使用了元组来表示一条规则,元组中包含 x、 l-x以及其置信度 ,最后返回生成的所有规则的列表。
三、算法执行结果
设置最大频繁项集数k为 3,最小支持度为 02,最小置信度为 08 使用 pycharm运行程序 ,得到以下结果:
由图中结果可以看出,对于频繁 1-项集,有五个满足的项集,频繁 2-项集有 6个,频繁 3-项集有 2个,它们都满足支持度大于或等于最小支持度 02。根据频繁项集,程序得到的关联规则有三条,即 {面包 }=>{牛奶 },,{鸡蛋 }=>{牛奶 },,{面包,苹果 }=>{牛奶 其中,这些规则的置信度都是 10,满足大于或等于最小置信度 08的条件 。
四、程序源码
雨林算法的数据结构:
AVC-set:节点n包含的所有纪录在某个属性上的投影,其中该AVC-set包括了属性的不同值在每个类别上的计数。
AVC-group:一个节点n上所有的AVC -set的集合
AVC-set的所占内存的大小正比于对应属性的不同值个数,AVC-group并不是数据库信息的简单的压缩,它只是提供了建立决策树需要的信息, AVC-group所占用的内存空间远远小于数据库所实际占用的空间。
一般设计方案:
AVC_set
{
//存储属性的各个值
DistinctValue[]
//存储属性各个值在某个类上对应的计数
DistinctValueCountForClassA[]
DistinctValueCountForClassB[]
… …
}
AVC_group
{
//节点n中的每个属性的avc_set
AVC_set[]
}
自顶向下决策树算法
BuildTree(Node m,datapatition D,algorithm decisionTree)
对D使用决策树算法decisionTree得到分裂指标crit(n)
令k为节点n的子节点个数
if(k>0)
建立n的k个子节点c1,…,ck
使用最佳分割将D分裂为D1,…,Dk
for(i=1;i<=k;i++)
BuildTree(ci,Di)
endfor
endif
RainForest 算法框架重新定义的部分:
1a) for 每一个属性的谓词p,寻找最佳的分割
1b) decisionTreefind_best_partitioning(AVC-set of p)
1c) endfor
2a) k= decisionTreedecide_splitting_criterion();//决定最终的分割
雨林算法的常规过程:
建立节点的AVC-group
(通过读取整个原始数据库或者某个分支的数据库表或文件)
选择分裂属性和分裂标准:取决于使用雨林算法框架的具体算法,通过逐一检查AVC-set来选择。
将数据分解到各个子节点:必须读取整个数据集(数据库或文件),将各条数据分解到各个子节点中,此时如果有足够的内存,我们将建立一个或多个子节点的AVC-group
参考资料:
数据挖掘(Data Mining),又称为数据库中的知识发现(Knowledge Discovery in Database, KDD),就是从大量数据中获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡过程,简单的说,数据挖掘就是从大量数据中提取或“挖掘”知识。
并非所有的信息发现任务都被视为数据挖掘。例如,使用数据库管理系统查找个别的记录,或通过因特网的搜索引擎查找特定的Web页面,则是信息检索(information retrieval)领域的任务。虽然这些任务是重要的,可能涉及使用复杂的算法和数据结构,但是它们主要依赖传统的计算机科学技术和数据的明显特征来创建索引结构,从而有效地组织和检索信息。尽管如此,数据挖掘技术也已用来增强信息检索系统的能力。
编辑本段数据挖掘的起源
为迎接前一节中的这些挑战,来自不同学科的研究者汇集到一起,开始着手开发可以处理不同数据类型的更有效的、可伸缩的工具。这些工作建立在研究者先前使用的方法学和算法之上,在数据挖掘领域达到高潮。特别地是,数据挖掘利用了来自如下一些领域的思想:(1) 来自统计学的抽样、估计和假设检验,(2) 人工智能、模式识别和机器学习的搜索算法、建模技术和学习理论。数据挖掘也迅速地接纳了来自其他领域的思想,这些领域包括最优化、进化计算、信息论、信号处理、可视化和信息检索。
一些其他领域也起到重要的支撑作用。特别地,需要数据库系统提供有效的存储、索引和查询处理支持。源于高性能(并行)计算的技术在处理海量数据集方面常常是重要的。分布式技术也能帮助处理海量数据,并且当数据不能集中到一起处理时更是至关重要。
编辑本段数据挖掘能做什么
1)数据挖掘能做以下六种不同事情(分析方法):
· 分类 (Classification)
· 估值(Estimation)
· 预言(Prediction)
· 相关性分组或关联规则(Affinity grouping or association rules)
· 聚集(Clustering)
· 描述和可视化(Des cription and Visualization)
· 复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
2)数据挖掘分类
以上六种数据挖掘的分析方法可以分为两类:直接数据挖掘;间接数据挖掘
· 直接数据挖掘
目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。
· 间接数据挖掘
目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系 。
· 分类、估值、预言属于直接数据挖掘;后三种属于间接数据挖掘
3)各种分析方法的简介
· 分类 (Classification)
首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类。
例子:
a xyk申请者,分类为低、中、高风险
b 分配客户到预先定义的客户分片
注意: 类的个数是确定的,预先定义好的
· 估值(Estimation)
估值与分类类似,不同之处在于,分类描述的是离散型变量的输出,而估值处理连续值的输出;分类的类别是确定数目的,估值的量是不确定的。
例子:
a 根据购买模式,估计一个家庭的孩子个数
b 根据购买模式,估计一个家庭的收入
c 估计real estate的价值
一般来说,估值可以作为分类的前一步工作。给定一些输入数据,通过估值,得到未知的连续变量的值,然后,根据预先设定的阈值,进行分类。例如:银行对家庭贷款业务,运用估值,给各个客户记分(Score 0~1)。然后,根据阈值,将贷款级别分类。
· 预言(Prediction)
通常,预言是通过分类或估值起作用的,也就是说,通过分类或估值得出模型,该模型用于对未知变量的预言。从这种意义上说,预言其实没有必要分为一个单独的类。预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一定时间后,才知道预言准确性是多少。
· 相关性分组或关联规则(Affinity grouping or association rules)
决定哪些事情将一起发生。
例子:
a 超市中客户在购买A的同时,经常会购买B,即A => B(关联规则)
b 客户在购买A后,隔一段时间,会购买B (序列分析)
· 聚集(Clustering)
聚集是对记录分组,把相似的记录在一个聚集里。聚集和分类的区别是聚集不依赖于预先定义好的类,不需要训练集。
例子:
a 一些特定症状的聚集可能预示了一个特定的疾病
b 租VCD类型不相似的客户聚集,可能暗示成员属于不同的亚文化群
聚集通常作为数据挖掘的第一步。例如,"哪一种类的促销对客户响应最好?",对于这一 类问题,首先对整个客户做聚集,将客户分组在各自的聚集里,然后对每个不同的聚集,回答问题,可能效果更好。
· 描述和可视化(Des cription and Visualization)
是对数据挖掘结果的表示方式。
编辑本段数据挖掘中的关联规则上面算法讲的很清楚了,我来举个例子:
Training data:
Id age income class
1 young 65 G
2 young 15 B
3 young 75 G
4 senior 40 B
5 senior 100 G
6 senior 60 G
AVC set „age“ for N1:
value class count
young B 1
young G 2
senior B 1
senior G 2
AVC set „income“ for N1:
value class count
15 B 1
40 B 1
60 G 1
65 G 1
75 G 1
100 G 1
AVC set „income“ for N2:
value class count
15 B 1
65 G 1
75 G 1
AVC set „age“ for N2:
value class count
young B 1
young G 2
最后推出雨林: N1
age=young / \ age=senior
/ \
N2 N3
最后提醒一点,对于雨林算法,训练样本集不要大于3百万。否则改用SPRINT。
1什么是关联规则
在描述有关关联规则的一些细节之前,我们先来看一个有趣的故事: "尿布与啤酒"的故事。
在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家所津津乐道。沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:"跟尿布一起购买最多的商品竟是啤酒!经过大量实际调查和分析,揭示了一个隐藏在"尿布与啤酒"背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。
按常规思维,尿布与啤酒风马牛不相及,若不是借助数据挖掘技术对大量交易数据进行挖掘分析,沃尔玛是不可能发现数据内在这一有价值的规律的。
数据关联是数据库中存在的一类重要的可被发现的知识。若两个或多个变量的取值之间存在某种规律性,就称为关联。关联可分为简单关联、时序关联、因果关联。关联分析的目的是找出数据库中隐藏的关联网。有时并不知道数据库中数据的关联函数,即使知道也是不确定的,因此关联分析生成的规则带有可信度。关联规则挖掘发现大量数据中项集之间有趣的关联或相关联系。Agrawal等于1993年首先提出了挖掘顾客交易数据库中项集间的关联规则问题,以后诸多的研究人员对关联规则的挖掘问题进行了大量的研究。他们的工作包括对原有的算法进行优化,如引入随机采样、并行的思想等,以提高算法挖掘规则的效率;对关联规则的应用进行推广。关联规则挖掘在数据挖掘中是一个重要的课题,最近几年已被业界所广泛研究。
2关联规则挖掘过程、分类及其相关算法
21关联规则挖掘的过程
关联规则挖掘过程主要包含两个阶段:第一阶段必须先从资料集合中找出所有的高频项目组(Frequent Itemsets),第二阶段再由这些高频项目组中产生关联规则(Association Rules)。
关联规则挖掘的第一阶段必须从原始资料集合中,找出所有高频项目组(Large Itemsets)。高频的意思是指某一项目组出现的频率相对于所有记录而言,必须达到某一水平。一项目组出现的频率称为支持度(Support),以一个包含A与B两个项目的2-itemset为例,我们可以经由公式(1)求得包含{A,B}项目组的支持度,若支持度大于等于所设定的最小支持度(Minimum Support)门槛值时,则{A,B}称为高频项目组。一个满足最小支持度的k-itemset,则称为高频k-项目组(Frequent k-itemset),一般表示为Large k或Frequent k。算法并从Large k的项目组中再产生Large k+1,直到无法再找到更长的高频项目组为止。
关联规则挖掘的第二阶段是要产生关联规则(Association Rules)。从高频项目组产生关联规则,是利用前一步骤的高频k-项目组来产生规则,在最小信赖度(Minimum Confidence)的条件门槛下,若一规则所求得的信赖度满足最小信赖度,称此规则为关联规则。例如:经由高频k-项目组{A,B}所产生的规则AB,其信赖度可经由公式(2)求得,若信赖度大于等于最小信赖度,则称AB为关联规则。
就沃尔马案例而言,使用关联规则挖掘技术,对交易资料库中的纪录进行资料挖掘,首先必须要设定最小支持度与最小信赖度两个门槛值,在此假设最小支持度min_support=5% 且最小信赖度min_confidence=70%。因此符合此该超市需求的关联规则将必须同时满足以上两个条件。若经过挖掘过程所找到的关联规则「尿布,啤酒」,满足下列条件,将可接受「尿布,啤酒」的关联规则。用公式可以描述Support(尿布,啤酒)>=5%且Confidence(尿布,啤酒)>=70%。其中,Support(尿布,啤酒)>=5%于此应用范例中的意义为:在所有的交易纪录资料中,至少有5%的交易呈现尿布与啤酒这两项商品被同时购买的交易行为。Confidence(尿布,啤酒)>=70%于此应用范例中的意义为:在所有包含尿布的交易纪录资料中,至少有70%的交易会同时购买啤酒。因此,今后若有某消费者出现购买尿布的行为,超市将可推荐该消费者同时购买啤酒。这个商品推荐的行为则是根据「尿布,啤酒」关联规则,因为就该超市过去的交易纪录而言,支持了“大部份购买尿布的交易,会同时购买啤酒”的消费行为。
从上面的介绍还可以看出,关联规则挖掘通常比较适用与记录中的指标取离散值的情况。如果原始数据库中的指标值是取连续的数据,则在关联规则挖掘之前应该进行适当的数据离散化(实际上就是将某个区间的值对应于某个值),数据的离散化是数据挖掘前的重要环节,离散化的过程是否合理将直接影响关联规则的挖掘结果。
22关联规则的分类
按照不同情况,关联规则可以进行分类如下:
1基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。
布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动态的分割,或者直接对原始的数据进行处理,当然数值型关联规则中也可以包含种类变量。例如:性别=“女”=>职业=“秘书” ,是布尔型关联规则;性别=“女”=>avg(收入)=2300,涉及的收入是数值类型,所以是一个数值型关联规则。
2基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。
在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而在多层的关联规则中,对数据的多层性已经进行了充分的考虑。例如:IBM台式机=>Sony打印机,是一个细节数据上的单层关联规则;台式机=>Sony打印机,是一个较高层次和细节层次之间的多层关联规则。
3基于规则中涉及到的数据的维数,关联规则可以分为单维的和多维的。
在单维的关联规则中,我们只涉及到数据的一个维,如用户购买的物品;而在多维的关联规则中,要处理的数据将会涉及多个维。换成另一句话,单维关联规则是处理单个属性中的一些关系;多维关联规则是处理各个属性之间的某些关系。例如:啤酒=>尿布,这条规则只涉及到用户的购买的物品;性别=“女”=>职业=“秘书”,这条规则就涉及到两个字段的信息,是两个维上的一条关联规则。
23关联规则挖掘的相关算法
1Apriori算法:使用候选项集找频繁项集
Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。
可能产生大量的候选集,以及可能需要重复扫描数据库,是Apriori算法的两大缺点。
2基于划分的算法
Savasere等设计了一个基于划分的算法。这个算法先把数据库从逻辑上分成几个互不相交的块,每次单独考虑一个分块并对它生成所有的频集,然后把产生的频集合并,用来生成所有可能的频集,最后计算这些项集的支持度。这里分块的大小选择要使得每个分块可以被放入主存,每个阶段只需被扫描一次。而算法的正确性是由每一个可能的频集至少在某一个分块中是频集保证的。该算法是可以高度并行的,可以把每一分块分别分配给某一个处理器生成频集。产生频集的每一个循环结束后,处理器之间进行通信来产生全局的候选k-项集。通常这里的通信过程是算法执行时间的主要瓶颈;而另一方面,每个独立的处理器生成频集的时间也是一个瓶颈。
3FP-树频集算法
针对Apriori算法的固有缺陷,J Han等提出了不产生候选挖掘频繁项集的方法:FP-树频集算法。采用分而治之的策略,在经过第一遍扫描之后,把数据库中的频集压缩进一棵频繁模式树(FP-tree),同时依然保留其中的关联信息,随后再将FP-tree分化成一些条件库,每个库和一个长度为1的频集相关,然后再对这些条件库分别进行挖掘。当原始数据量很大的时候,也可以结合划分的方法,使得一个FP-tree可以放入主存中。实验表明,FP-growth对不同长度的规则都有很好的适应性,同时在效率上较之Apriori算法有巨大的提高。
3该领域在国内外的应用
3.1关联规则发掘技术在国内外的应用
就目前而言,关联规则挖掘技术已经被广泛应用在西方金融行业企业中,它可以成功预测银行客户需求。一旦获得了这些信息,银行就可以改善自身营销。现在银行天天都在开发新的沟通客户的方法。各银行在自己的ATM机上就捆绑了顾客可能感兴趣的本行产品信息,供使用本行ATM机的用户了解。如果数据库中显示,某个高信用限额的客户更换了地址,这个客户很有可能新近购买了一栋更大的住宅,因此会有可能需要更高信用限额,更高端的新xyk,或者需要一个住房改善贷款,这些产品都可以通过xyk账单邮寄给客户。当客户打电话咨询的时候,数据库可以有力地帮助电话销售代表。销售代表的电脑屏幕上可以显示出客户的特点,同时也可以显示出顾客会对什么产品感兴趣。
同时,一些知名的电子商务站点也从强大的关联规则挖掘中的受益。这些电子购物网站使用关联规则中规则进行挖掘,然后设置用户有意要一起购买的捆绑包。也有一些购物网站使用它们设置相应的交叉销售,也就是购买某种商品的顾客会看到相关的另外一种商品的广告。
但是目前在我国,“数据海量,信息缺乏”是商业银行在数据大集中之后普遍所面对的尴尬。目前金融业实施的大多数数据库只能实现数据的录入、查询、统计等较低层次的功能,却无法发现数据中存在的各种有用的信息,譬如对这些数据进行分析,发现其数据模式及特征,然后可能发现某个客户、消费群体或组织的金融和商业兴趣,并可观察金融市场的变化趋势。可以说,关联规则挖掘的技术在我国的研究与应用并不是很广泛深入。
3.2近年来关联规则发掘技术的一些研究
由于许多应用问题往往比超市购买问题更复杂,大量研究从不同的角度对关联规则做了扩展,将更多的因素集成到关联规则挖掘方法之中,以此丰富关联规则的应用领域,拓宽支持管理决策的范围。如考虑属性之间的类别层次关系,时态关系,多表挖掘等。近年来围绕关联规则的研究主要集中于两个方面,即扩展经典关联规则能够解决问题的范围,改善经典关联规则挖掘算法效率和规则兴趣性。
编辑本段数据挖掘技术实现
在技术上可以根据它的工作过程分为:数据的抽取、数据的存储和管理、数据的展现等关键技术。
·数据的抽取
数据的抽取是数据进入仓库的入口。由于数据仓库是一个独立的数据环境,它需要通过抽取过程将数据从联机事务处理系统、外部数据源、脱机的数据存储介质中导入数据仓库。数据抽取在技术上主要涉及互连、复制、增量、转换、调度和监控等几个方面的处理。在数据抽取方面,未来的技术发展将集中在系统功能集成化方面,以适应数据仓库本身或数据源的变化,使系统更便于管理和维护。
·数据的存储和管理
数据仓库的组织管理方式决定了它有别于传统数据库的特性,也决定了其对外部数据的表现形式。数据仓库管理所涉及的数据量比传统事务处理大得多,且随时间的推移而快速累积。在数据仓库的数据存储和管理中需要解决的是如何管理大量的数据、如何并行处理大量的数据、如何优化查询等。目前,许多数据库厂家提供的技术解决方案是扩展关系型数据库的功能,将普通关系数据库改造成适合担当数据仓库的服务器。
·数据的展现
在数据展现方面主要的方式有:
查询:实现预定义查询、动态查询、OLAP查询与决策支持智能查询;报表:产生关系数据表格、复杂表格、OLAP表格、报告以及各种综合报表;可视化:用易于理解的点线图、直方图、饼图、网状图、交互式可视化、动态模拟、计算机动画技术表现复杂数据及其相互关系;统计:进行平均值、最大值、最小值、期望、方差、汇总、排序等各种统计分析;挖掘:利用数据挖掘等方法,从数据中得到关于数据关系和模式的知识。
编辑本段数据挖掘与数据仓库融合发展
数据挖掘和数据仓库的协同工作,一方面,可以迎合和简化数据挖掘过程中的重要步骤,提高数据挖掘的效率和能力,确保数据挖掘中数据来源的广泛性和完整性。另一方面,数据挖掘技术已经成为数据仓库应用中极为重要和相对独立的方面和工具。
数据挖掘和数据仓库是融合与互动发展的,其学术研究价值和应用研究前景将是令人振奋的。它是数据挖掘专家、数据仓库技术人员和行业专家共同努力的成果,更是广大渴望从数据库“奴隶”到数据库“主人”转变的企业最终用户的通途。
统计学与数据挖掘
统计学和数据挖掘有着共同的目标:发现数据中的结构。事实上,由于它们的目标相似,一些人(尤其是统计学家)认为数据挖掘是统计学的分支。这是一个不切合实际的看法。因为数据挖掘还应用了其它领域的思想、工具和方法,尤其是计算机学科,例如数据库技术和机器学习,而且它所关注的某些领域和统计学家所关注的有很大不同。
1.统计学的性质
试图为统计学下一个太宽泛的定义是没有意义的。尽管可能做到,但会引来很多异议。相反,我要关注统计学不同于数据挖掘的特性。
差异之一同上节中最后一段提到的相关,即统计学是一门比较保守的学科,目前有一种趋势是越来越精确。当然,这本身并不是坏事,只有越精确才能避免错误,发现真理。但是如果过度的话则是有害的。这个保守的观点源于统计学是数学的分支这样一个看法,我是不同意这个观点的,尽管统计学确实以数学为基础(正如物理和工程也以数学为基础,但没有被认为是数学的分支),但它同其它学科还有紧密的联系。
数学背景和追求精确加强了这样一个趋势:在采用一个方法之前先要证明,而不是象计算机 这
在R中输入以下代码安装:
source(">
以上就是关于企业使用都哪些大数据分析的关键技术全部的内容,包括:企业使用都哪些大数据分析的关键技术、浅谈如何利用数据开展银行存贷款关联业务审计、制造业如何进行质量数据分析教程,内含大量分析图表!等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)