PSO的接口楼上已经说了,我跟你说下关于你的图像聚类的问题怎么选适应度函数,聚类的目的一般是选出C个质心,采用近邻原则通过C个质心对样本点进行聚类。
所以关于你的问题,首先要确定你想聚类成几类,假设为C类
初始化每个粒子的位置向量为C个质心的位置(假设你的样本维数D,初始化每一个粒子为一个CD的向量)
适应度函数:计算每个样本点到C个质心的位置,选择最短的距离,假设d,计算所有样本的距离d相加,这就是适应度函数
当前对微粒群算法开展的理论研究主要集中在微粒群算法的原理方面,即微粒之间是如何相互作用的,为什么微粒群算法对于很多优化问题是有效的,而对于有些问题则效果不是很明显。具体来说,这个问题的研究又分为三个方面,其一是单个微粒的运动轨迹;其二是收敛性问题;其三是整个微粒系统随时间的演化和分布。
对简化微粒行为的第一个分析由Kennedy给出,通过仿真给出了一系列设计选择的情况下不同的微粒轨迹。对简化微粒群算法的第一个理论分析由Ozcan给出,作者在文中指出,在一个简化的一维PSO系统中,微粒沿着一条由正弦波定义的路径前进,随机确定其幅度和频率。但是,他们的分析仅限于没有惯性权重的简单PSO模型,并且假定Pid和Pgd保持不变。事实上,Pid和Pgd会频繁变化,于是微粒轨迹由很多不同幅度和频率的正弦波合成,整个轨迹看起来仍然是无序的。这使得他们的结论的有效性大打折扣。
对算法稳定性质的第一个形式化分析由Clerc给出,但是该分析需要将随机系数视作常数,从而将标准随机PSO算法简化为一个确定型动态系统。这样得到的系统是一个二阶线性动态系统,其稳定性依赖于系统的极点或状态矩阵的特征根。van den Bergh对基于确定型版本的PSO算法进行了类似的分析,并确定了在参数空间中保证稳定性的区域。在文献[5]和[42]中也提出了关于收敛性和参数选择的内容,但是作者承认他们并没有考虑算法的随机特性,因此其结果有局限性。类似的还有对连续时间版本的PSO算法所作的分析。
Blackwell针对球形对称局部邻域的函数,对PSO算法中多样性缺失的速度进行了理论分析和实验验证。Kennedy系统地研究了速度对PSO算法的影响,有助于理解速度对算法性能的贡献。
Kadirkamanathan等采用李雅普诺夫稳定性分析和被动系统(Passive System)的概念,对微粒动力学的稳定性进行了分析。该分析中没有假定所有参数均为非随机的限制,得出了稳定的充分条件,并给出示例。仿真结果验证了理论的预期,微粒动力学的稳定需要在惯性权重减小时,增大随机参数的最大值。该分析是基于随机微粒动力学的,将微粒动力学表达为一个非线性反馈控制系统。该系统有一个确定型线性部分和一个非线性部分,以及/或在反馈路径上的时变增益。该文虽然考虑了随机分量的影响,但是其稳定性分析是针对最优位置所进行的(群体最优和个体最优相同),其结论不能直接应用到非最优的微粒。
Clerc研究了处于停滞阶段的微粒群算法的迭代过程,对迭代过程中的各随机系数进行了详细的研究,给出了各随机系数的概率密度函数。
Jiang将微粒群算法中每一演化步骤时的微粒位置量视作一个随机向量,考查了微粒群算法中惯性权重ω和学习因子c1、c2等参数对算法收敛性的影响,并采用随机过程理论分析了标准微粒群算法的随机收敛性。
原始PSO算法即使能够收敛,也只能收敛到群体所搜索到的最好解,而不能保证该收敛解是最优解,甚至不能保证它是局部最优解。van den Bergh提出一种保证收敛的PSO算法,其策略是对全局最优微粒采用一个新的更新方程,使其在全局最好位置附近产生一个随机搜索,而其他微粒仍用原方程更新。该算法能够保证微粒群算法收敛到局部最优解,其代价为收敛速度加快,在多模问题中性能不如标准PSO算法。
PSO就是梦幻之星网络版的简称是SEGA出品的在线ARPG游戏网络游戏最高杰作
TSO其实就是“Time Sharing Option”的简写,顾名思义,就是IBM为了在批处理系统中支持分时特性的一个东西了。 *** 作系统启动的时候,它一般也就启动了,否则用户就不能在普通终端上登录系统。在使用中可以把它当成Windows或UNIX里面的一个系统程序或进程。TSO大概是大机用户最常用的东西,在终端上登录系统是少不了它的。
pso:Program Support Office(项目群支持办公室),而PMO:Project Management Office(项目管理办公室),楼主可以上下高亚科技的网站,里面以后很多项目管理的知识。
以上就是关于哪位大神指点一下粒子群优化算法(PSO)的输入和输入分别是什么全部的内容,包括:哪位大神指点一下粒子群优化算法(PSO)的输入和输入分别是什么、pso的理论分析、谁能解释一上 PSO 和TSO。等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)