1下载安装文件,选择稳定版本
2点击安装exe文件,进行安装。选择好路径,一直到安装结束即可。
3点击Service查看Redis服务是否正确的安装。Windows--》Servicemsc。默认的端口为6379。服务已启动。
4使用客户端工具进行连接,出现如下画面即成功。
5使用CMD工具,安装另一个Redis实例服务,端口为6369需要提前建好6369端口使用的conf文件
如:C:\Users\Gray>E:\redis-2817\redis-serverexe --service-installE:\redis-2817\redis6369conf --service-name RedisServer6369 --port 6369
试验了几次都没有提示成功的信息,但是查看服务成功了,而且用客户端连接也成功了。
6查看6369端口的redis服务
7使用客户端连接6369 redis服务,出现如下界面表示成功
8至此,大功告成。
任何兼容Redis协议的客户端都可以访问云数据库Redis实例,建议使用移动云推荐的方式,比如移动云Jedis客户端,避免出现某些命令不支持的问题。同时,云数据库Redis目前仅支持移动云内网访问。此外,在连接Redis时,如果经常出现固定时间连接超时,有可能是因为一些中间件设置了超时时间(如nginx、haproxy),导致应用在固定时间不连接Redis后,连接被中间件主动断开,此时可以选择定时连接一次Redis或者增大中间件超时时间,防止连接主动断开。在“狂欢双11,「移」价到底”这一活动中,新用户可以领取云数据库Redis的3折优惠券,订购更优惠。了解移动云云数据库Redis更多详情,欢迎注册登录移动云官网→>
Redis实际应用场景
1、显示最新的项目列表
下面这个语句常用来显示最新项目,随着数据多了,查询毫无疑问会越来越慢。
SELECT FROM fOO WHERE ORDER BY time DESC LIMIT 10
在Web应用中,“列出最新的回复”之类的查询非常普遍,这通常会带来可扩展性问题。这令人沮丧,因为项目本来就是按这个顺序被创建的,但要输出这个顺序却不得不进行排序 *** 作。类似的问题就可以用Redis来解决。比如说,我们的一个Web应用想要列出用户贴出的最新20条评论。在最新的评论边上我们有一个“显示全部”的链接,点击后就可以获得更多的评论。我们假设数据库中的每条评论都有一个唯一的递增的ID字段。我们可以使用分页来制作主页和评论页,使用Redis的模板,每次新评论发表时,我们会将它的ID添加到一个Redis列表:
LPUSH latestcomments <ID>
我们将列表裁剪为指定长度,因此Redis只需要保存最新的5000条评论:
LTRIM latestcomments 0 5000
每次我们需要获取最新评论的项目范围时,我们调用一个函数来完成(使用伪代码):
FUNCTION get_latest_comments(start,num_items):
id list =redislrange("latestcomments",start,start+num items -1) IF id listlength<num items
id list = SQL DB("SELECT ORDER BY time LIMIT ") END
RETURN id list END
这里我们做的很简单。在Redis中我们的最新ID使用了常驻缓存,这是一直更新的。但是我们做了限制不能超过5000个ID,因此我们的获取ID函数会一直询问Redis。只有在start/count参数超出了这个范围的时候,才需要去访问数据库。
我们的系统不会像传统方式那样“刷新”缓存,Redis实例中的信息永远是一致的。SQL数据库(或是硬盘上的其他类型数据库)只是在用户需要获取“很远”的数据时才会被触发,而主页或第一个评论页是不会麻烦到硬盘上的数据库了。
今年年中,一位前谷歌、前亚马逊的工程师推出了他创作的开源内存数据缓存系统 Dragonfly,用 C/C++ 编写,基于 BSL 许可(Business Source License)分发。
根据过往的基准测试结果来看, Dragonfly 可能是世界上最快的内存存储系统,它提供了对 Memcached 和 Redis 协议的支持,但能够以更高的性能进行查询,运行时内存消耗也更少。与 Redis 相比,Dragonfly 在典型工作负载下实现了 25 倍的性能提升;单个 Dragonfly 服务器每秒可以处理数百万个请求;在 5GB 存储测试中,Dragonfly 所需的内存比 Redis 少 30%。
作为一个开源软件,Dragonfly 在短短两个月获得了 92K GitHub 星,177 个 fork 分支。虽然这些年,涌现了不少类似的 Redis 兼容型内存数据存储系统,例如 KeyDB、Skytable,但是都没能像这次这么“轰动”。毕竟 Redis 诞生了十多年,这时从头开始设计一个缓存系统,可以抛弃 历史 包袱,更好地利用资源。
为回击新冒头的 Dragonfly,Redis 的联合创始人兼 CTO Yiftach Shoolman 和 Redis Labs 的首席架构师 Yossi Gottlieb、Redis Labs 的性能工程师 Filipe Oliveira 联合发布了一篇名为《13 年后,Redis 是否需要新的架构》的文章。
在文章中,他们特地给出了自认更加公平的 Redis 70 vs Dragonfly 基准测试结果:Redis 的吞吐量比 Dragonfly 高 18% - 40%,以及一些有关 Redis 架构的观点和思考,以证明 “为什么 Redis 的架构仍然是内存实时数据存储(缓存、数据库,以及介于两者之间的所有内容)的最佳架构”。
虽然他们强调 Redis 架构仍然是同类最佳,但也没法忽视 Dragonfly 这些新软件提供的一些新鲜、有趣的想法和技术,Redis 表示其中的一些甚至有可能在未来进入 Redis(比如已经开始研究的 io_uring 、更现代的 dictionaries、更有策略地使用线程等)。
另外,Redis 指出 Dragonfly 基准测试的比较方法 “不能代表 Redis 在现实世界中的运行方式” 。对此,Reddit 上有网友反驳称:
还有人表示,这篇文章是 Redis 团队在有礼貌地否认“Dragonfly 是最快的缓存系统”,但更多网友表示,Redis 发文章进行“回击”,就已经代表他们的营销部门输了:
我们当然一直在寻求为 Redis 提升性能、扩充功能的创新方向,但这里我们想聊聊自己的观点和思考,阐释 Redis 时至今日为何仍是最出色的实时内存数据存储(包括缓存、数据库以及介于二者之间的一切)方案之一。
接下来,我们将重点介绍 Redis 对于速度和架构差异的观点,再以此为基础做出比较。在文章的最后,我们还会提供基准测试结果、与 Dragonfly 项目的详尽性能比较信息,欢迎大家自行对比参考。
Dragonfly 基准测试其实是将独立单进程 Redis 实例(只能使用单一核心)与多线程 Dragonfly 实例(可以使用虚拟机 / 服务器上的全部可用核心)进行比较。很明显,这样的粗暴比较并不能代表 Redis 在现实场景下的运行状态。作为技术构建者,我们希望更确切地把握自有技术同其他方案间的差异,所以这里我们做了一点公平性调整:将具有 40 个分片的 Redis 70 集群(可使用其中的大部分实例核心)与 Dragonfly 团队在基准测试中使用的最大实例类型(AWS c4gn16xlarge)进行性能比较。
在这轮测试中,我们看到 Redis 的吞吐量比 Dragonfly 要高出 18% 至 40%,而这还仅仅只用到全部 64 个 vCore 中的 40 个。
在我们看来,每一位多线程项目的开发者在立项之前,都会根据以往工作中经历过的痛点来指导架构决策。我们也承认,在多核设备上运行单一 Redis 进程(这类设备往往提供几十个核心和数百 GB 内存)确实存在资源无法充分利用的问题。但 Redis 在设计之初也确实没有考虑到这一点,而且众多 Redis 服务商已经拿出了相应的解决方案,借此在市场上占得一席之地。
Redis 通过运行多个进程(使用 Redis 集群)实现横向扩展,包括在单一云实例背景下也是如此。在 Redis 公司,我们进一步拓展这个概念并建立起 Redis Enterprise。Redis Enterprise 提供管理层,允许用户大规模运行 Redis,并默认启用高可用性、即时故障转移、数据持久与备份等功能。
下面,我们打算分享幕后使用的一些原则,向大家介绍我们如何为 Redis 的生产应用设计良好的工程实践。
通过在每个虚拟机上运行多个 Redis 实例,我们可以:
我们不允许单一 Redis 进程的大小超过 25 GB(运行 Redis on Flash 时上限为 50 GB)。如此一来,我们就能:
以横向扩展的方式灵活运行内存数据存储,是 Redis 获得成功的关键。下面来看具体原因:
我们仍然欣赏由社区提出的种种有趣思路和技术方案。其中一部分有望在未来进入 Redis(我们已经开始研究 io_uring、更现代的字典、更丰富的线程使用策略等)。但在可预见的未来,我们不会放弃 Redis 所坚守的无共享、多进程等基本架构原则。这种设计不仅具备最佳性能、可扩展性和d性,同时也能够支持内存内实时数据平台所需要的各类部署架构。
附录:Redis 70 对 Draonfly 基准测试细节
版本:
目标:
客户端配置:
资源利用与配置优化:
最后,我们还发现 Redis 和 Dragonfly 都不受网络每秒数据包或传输带宽的限制。我们已经确认在 2 个虚拟机间(分别作为客户端和服务器,且均使用 c6gn16xlarge 实例)使用 TCP 传递约 300 B 大小的数据包负载时,可以让每秒数据包传输量达到 1000 万以上、传输带宽超过 30 Gbps。
单 GET 通道延迟低于 1 毫秒:
30 条 GET 通道:
单 SET 通道延迟低于 1 毫秒:
30 条 SET 通道:
用于各变体的 memtier_benchmark 命令:
单 GET 通道延迟低于 1 毫秒
30 条 GET 通道
单 SET 通道延迟低于 1 毫秒
30 条 SET 通道
在本次比较测试中,我们在客户端(用于运行 memtier_benchmark)和服务器(用于运行 Redis 和 Dragonfly)使用了相同的虚拟机类型,具体规格为:
参考链接:
>
redis 提供一种复制(replication)功能, 可以实现当一台数据库中的数据更新后,自动同更新同步到其他数据库上 这就是所谓的主从模式
在这种主从模式中, 数据库分两类:
- 主数据库: 可以进行读写 *** 作;
- 从数据库: 一般可以读 *** 作;
以上就是关于Redis 学习总结(3) Redis 哨兵模式全部的内容,包括:Redis 学习总结(3) Redis 哨兵模式、两个Redis实例互相SLAVEOF会怎样、如何在Windows系统下安装多个Redis实例等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)