自2000年以来,国内监控组态软件产品、技术、市场都取得了飞快的发展,应用领域日益拓展,用户和应用工程师数量不断增多。充分体现了“工业技术民用化”的发展趋势。
监控组态软件是工业应用软件的重要组成部分,其发展受到很多因素的制约,归根结底,是应用的带动对其发展起着最为关键的推动作用。
关于新技术的不断涌现和快速发展对监控组态软件会产生何种影响,有人认为随着技术的发展,通用组态软件会退出市场,例如有的自动化装置直接内嵌“Web Server”实时画面供中控室 *** 作人员访问。
作者并不这样认为。用户要求的多样化,决定了不可能有哪一种产品囊括全部用户的所有的画面要求,最终用户对监控系统人机界面的需求不可能固定为单一的模式,因此最终用户的监控系统是始终需要“组态”和“定制”的。这就是监控组态软件不可能退出市场的主要原因,因为需求是存在且不断增长的。
监控组态软件是在信息化社会的大背景下,随着工业IT技术的不断发展而诞生、发展起来的。在整个工业自动化软件大家庭中,监控组态软件属于基础型工具平台。监控组态软件给工业自动化、信息化、及社会信息化带来的影响是深远的,它带动着整个社会生产、生活方式的变化,这种变化仍在继续发展。因此组态软件作为新生事物尚处于高速发展时期,目前还没有专门的研究机构就它的理论与实践进行研究、总结和探讨,更没有形成独立、专门的理论研究机构。
近5年来,一些与监控组态软件密切相关的技术如OPC、OPC-XML、现场总线等技术也取得了飞速的发展,是监控组态软件发展的有力支撑。 721 监控组态软件日益成为自动化硬件厂商争夺的重点
整个自动化系统中,软件所占比重逐渐提高,虽然组态软件只是其中一部分,但因其渗透能力强、扩展性强,近年来蚕食了很多专用软件的市场。因此,监控组态软件具有很高的产业关联度,是自动化系统进入高端应用、扩大市场占有率的重要桥梁。在这种思路的驱使下,西门子的WinCC在市场上取得巨大成功。目前,国际知名的工业自动化厂商如Rockwell、GE Fanuc、Honeywell、西门子、ABB、施耐德、英维思等均开发了自己的组态软件。
监控组态软件在DCS *** 作站软件中所占比重日益提高
继FOXBORO之后,Euro therm(欧陆)、Delta V、PCS7等DCS系统纷纷使用通用监控组态软件作为 *** 作站。同时,国内的DCS厂家也开始尝试使用监控组态软件作为 *** 作站。
在大学和科研机构,越来越多的人开始从事监控组态软件的相关技术研究
从国内自动化行业学术期刊来看,以组态软件及与其密切相关的新技术为核心的研究课题呈上升趋势,众多研究人员的存在,是组态软件技术发展及创新的重要活跃因素,也一定能够积累很多技术成果。无论是技术成果还是研究人员,都会遵循金字塔的规律,由基础向高端形成过渡。这些研究人员和他们的研究成果为监控组态软件厂商开发新产品提供了有益的经验借鉴,并开拓他们的思路。
基于Linux 的监控组态软件及相关技术正在迅速发展之中,很多厂商都相继推出成熟的商品,对组态软件业的格局将产生深远的影响。
722 集成化、定制化
从软件规模上看,大多数监控组态软件的代码规模超过100万行,已经不属于小型软件的范畴了。从其功能来看,数据的加工与处理、数据管理、统计分析等功能越来越强。
监控组态软件作为通用软件平台,具有很大的使用灵活性。但实际上很多用户需要“傻瓜”式的应用软件,即需要很少的定制工作量即可完成工程应用。为了既照顾“通用”又兼顾“专用”,监控组态软件拓展了大量的组件,用于完成特定的功能,如批次管理、事故追忆、温控曲线、油井示功图组件、协议转发组件、ODBCRouter、ADO曲线、专家报表、万能报表组件、事件管理、GPRS透明传输组件等。
723纵向:功能向上、向下延伸
组态软件处于监控系统的中间位置,向上、向下均具有比较完整的接口,因此对上、下应用系统的渗透能力也是组态软件的一种本能,具体表现为:
向上
其管理功能日渐强大,在实时数据库及其管理系统的配合下,具有部分MIS、MES或调度功能。尤以报警管理与检索、历史数据检索、 *** 作日志管理、复杂报表等功能较为常见。
向下
日益具备网络管理(或节点管理)功能:在安装有同一种组态软件的不同节点上,在设定完地址或计算机名称后,互相间能够自动访问对方的数据库。组态软件的这一功能,与OPC规范以及IEC61850规约、BACNet等现场总线的功能类似,反映出其网络管理能力日趋完善的发展趋势。
软PLC、嵌入式控制等功能:除组态软件直接配备软PLC组件外,软PLC组件还作为单独产品与硬件一起配套销售,构成PAC控制器。这类软PLC组件一般都可运行于嵌入式Linux *** 作系统。
OPC服务软件:OPC标准简化了不同工业自动化设备之间的互联通讯,无论在国际上还是国外,都已成为广泛认可的互联标准。而组态软件同时具备OPC Server和OPC Client功能,如果将组态软件丰富的设备驱动程序根据用户需要打包为OPCServe单独销售,则既丰富了软件产品种类又满足了用户的这方面需求,加拿大的Matrikon公司即以开发、销售各种OPCServer软件为主要业务,已经成为该领域的领导者。监控组态软件厂商拥有大量的设备驱动程序,因此开展OPCSever软件的定制开发具有得天独厚的优势。
工业通信协议网关:它是一种特殊的Gateway,属工业自动化领域的数据链产品。OPC标准适合计算机与工业I/O设备或桌面软件之间的数据通讯,而工业通信协议网关适合在不同的工业I/O设备之间、计算机与I/O设备之间需要进行网段隔离、无人值守、数据保密性强等应用场合的协议转换。市场上有专门从事工业通讯协议网关产品开发、销售的厂商,如Woodhead、prolinx等,但是组态软件厂商将其丰富的I/O驱动程序扩展一个协议转发模块就变成了通讯网关,开发工作的风险和成本极小。Multi_OPCServer和通讯网关pFieldComm都是力控ForceControl组态软件的衍生产品。
724横向:监控、管理范围及应用领域扩大
只要同时涉及实时数据通讯(无论是双向还是单向)、实时动态图形界面显示、必要的数据处理、历史数据存储及显示,就存在对组态软件的潜在需求。
除了大家熟知的工业自动化领域,近几年以下领域已经成为监控组态软件的新增长点:
设备管理或资产管理(PAM,Plant Asset Management)。此类软件的代表是艾默生公司的设备管理软件AMS。据ARC机构预测,到2009年全球PAM的业务量将达到19亿美元。PAM所包含的范围很广,其共同点是实时采集设备的运行状态,累积设备的各种参数(如运行时间、检修次数、负荷曲线等),及时发现设备隐患、预测设备寿命,提供设备检修建议,对设备进行实时综合诊断。
针对过程控制和自动化控制,美国ICONICS公司推出了注重设备故障检测和诊断的分析管理软件Facility AnalytiX,Facility AnalytiX®是一个带有预测功能的楼宇自动化解决方案,它以ICONICS先进的故障检测和诊断(FDD)引擎作为核心。它的内部算法会权衡各种故障可能性,并据此建议管理者, *** 作人员和维修工采取措施以防设备故障发生或者产生能源浪费。当设备发生故障时,先进的软件技术会自动提供一个可能故障原因的分类列表,这样就可以减少停机时间并降低故障诊断和故障恢复的成本。目前已经在美国电力和园区级楼宇项目得到广泛的应用。
先进控制或优化控制系统。在工业自动化系统获得普及以后,为提高控制质量和控制精度,很多用户开始引进先进控制或优化控制系统。这些系统包括自适应控制、(多变量)预估控制、无模型控制器、鲁棒控制、智能控制(专家系统、模糊控制、神经网络等)、其他依据新控制理论而编写的控制软件等。这些控制软件的常项是控制算法,使用监控组态软件主要解决控制软件的人机界面、与控制设备的实时数据通讯等问题。
工业仿真系统。仿真软件为用户 *** 作模拟对象提供了与实物几乎相同的环境。仿真软件不但节省了巨大的培训成本开销,还提供了实物系统所不具备的智能特性。仿真系统的开发商专长于仿真模块的算法,在实时动态图形显示、实时数据通讯方面不一定有优势,力控®;监控组态软件与仿真软件间通过高速数据接口联为一体,在教学、科研仿真应用中应用越来越广泛。
电网系统信息化建设。电力自动化是监控组态软件的一个重要应用领域,电力是国家的基础行业,其信息化建设是多层次的,由此决定了对组态软件的多层次需求。
智能建筑:物业管理的主要需求是能源管理(节能)和安全管理,这一管理模式要求建筑物智能设备必须联网,首先有效地解决信息孤岛问题,减少人力消耗,提高应急反应速度和设备预期寿命,智能建筑行业在能源计量、变配电、安防&;门禁、消防系统系统联入IBMS服务器方面需求旺盛。
公共安全监控与管理:公共安全的隐患可造成突发事件应急失当,容易造成城市公共设施瘫痪、人员群死群伤等恶性灾难。公共安全监控包括:
人防(车站、广场)等市政工程有毒气体浓度监控及火灾报警。
水文监测:包括水位、雨量、闸位、大坝的实时监控。
重大建筑物(如桥梁等)健康状态监控:及时发现隐患,预报事故的发生。
机房动力环境监控:在电信、铁路、银行、证券、海关等行业以及国家重要的机关部门,计算机服务器的正常工作是业务和行政正常进行的必要条件,因此存放计算机服务器的机房重地已经成为监控的重点,监控的内容包括:UPS工作参数及状态、电池组的工作参数及状态、空调机组的运行状态及参数、漏水监测、发电机组监测、环境温湿度监测、环境可燃气体浓度监测、门禁系统监测等。
城市危险源实时监测:对存放危险源的场所、危险源行踪的监测。避免放射性物质和剧毒物质失控地流通。
国土资源立体污染监控:对土壤、大气中与农业生产有关的污染物含量进行实时监测,建立立体式实时监测网络。
城市管网系统实时监控及调度:包括供水管网、燃气管网、供热管网等的监控。 组态软件已经成为工业自动化系统的必要组成部分,即“基本单元”或“基本元件”,因此吸引了大型自动化公司纷纷投资开发自有知识产权的组态软件,以期依靠强大的市场产生大批量的销售,从中获取利润。
目前在国内外市场占有率较高的监控组态软件分别是GE Fanuc的iFix、Wonderware的Intouch、西门子WinCC、Citech等。中国大陆厂商以力控、亚控等为主,除此外尚有5-10个厂商从事监控组态软件业务。
在国内市场上,高端市场仍被国外产品垄断。国内产品已经开始抢占一些高端市场,并且所占比例在逐渐增长。
⑴ 组态软件产品本身的变化
作为通用型工具软件,组态软件在自动化系统中始终处于“承上启下”的地位。用户在涉及工业信息化的项目中,如果涉及到实时数据采集,首先会考虑试用组态软件。正因如此,组态软件几乎应用于所有的工业信息化项目当中。应用的多样性,给组态软件的性能指标、使用方式、接口方式都提出了很多新的要求,也存在一些挑战。这些需求对组态软件系统结构带来的冲击是巨大的,对组态软件的发展起到关键的促进作用。
功能变迁:仍以人机界面为主,数据采集、历史数据库、报警管理、 *** 作日志管理、权限管理、数据通讯转发成为其基础功能;功能组件呈分化、集成化、功能细分的发展趋势,以适应不同行业、不同用户层次的多方面需求。
新技术的采用:组态软件的IT化趋势明显,大量的最新计算技术、通讯技术、多媒体技术被用来提高其性能,扩充其功能。
注重效率:实际上,有的“组态”工作非常繁琐,用户希望通过模板快速生成自己的项目应用。图形模板、数据库模板、设备模板可以让用户以“复制”方式快速生成目标程序。
组态软件注重数据处理能力和数据吞吐能力的提高:组态软件除了常规的实时数据通讯、人机界面功能外,1万点以上的实时数据历史存储与检索、100个以上C/S或B/S客户端对历史数据库系统的并发访问,对组态软件的性能都是严峻的考验。随着应用深度的提高,这种要求会变得越来越普遍。
与控制系统硬件捆绑:组态软件与自动控制设备实现无缝集成,为硬件“量身定做”。这表明组态软件的渗透能力逐渐加强,自动化系统从来就离不开软件的支持,而整体解决方案利于硬件产品的销售,也利于厂商控制销售价格。
⑵组态软件其他应用环境的变化
造成组态软件需求增长的另外一个原因是,传感器、数据采集装置、控制器的智能化程度越来越高,实时数据浏览和管理的需求日益高涨,有的用户甚至要求在自己的办公室里监督定货的制造过程。
类似OPC这样的组织的出现,以及现场总线、尤其是工业以太网的快速发展,大大简化了异种设备间互连、开发I/O设备驱动软件的工作量。I/O驱动软件也逐渐会朝标准化的方向发展。
通过近十年的发展,以力控科技等为代表的国内监控组态软件,在技术、市场、服务方面已趋于成熟,形成了比较雄厚的市场和技术积累,具备了与国外对手抗衡的本钱。
新技术的出现,会淘汰一批墨守成规、不思进取的厂商。那些以用户需求为为中心、勇于创新,采用新技术不断满足用户日益增长的潜在需求的厂商会逐渐在市场上取得主动,成为组态软件及相关工业IT产品市场的主导者。
发展潜力:虽然组态软件的市场潜力巨大,但是要想得到这个市场却并非容易。一方面,用户对组态软件的要求越来越高,用户的应用水平也在同步提高,相应地对软件的品质要求也越来越高;另一方面,组态软件厂商应该前瞻性地研发具有潜在需求的新功能、新产品。因此市场巨大并不代表所有从事组态软件开发的厂商都有均等的机会,机会永远属于少数优秀厂商。
a 为适应新需求未来监控组态软件的分布式体系结构
前面已经介绍,监控组态软件的规模都在100万行以上,这样庞大的软件系统在结构设计上必须采用分布式结构。分布式系统并不是监控组态软件的专利,目前很多大型软件系统都是分布式系统。
在组态软件中,重新提起“分布式”这个老话题是必要的,因为规模大于5000点的应用几乎离不开分布式应用的需求。还需要强调,不是因为组态软件缺少分布式结构的产品,而是缺少真正经得起分布式应用考验的产品。
b 目前国内监控组态软件产业发展中存在的问题
软件是自动化系统的核心与灵魂,组态软件又具有很高的渗透能力和产业关联度。不管从横向还是纵向看,一个自动化系统中,组态软件日益渗透到每个角落,占据越来越多的份额。组态软件越来越多地体现着自动化系统的价值。
虽然软件是自动化系统的核心与灵魂,但是组态软件还远未承担起这一角色。组态软件的内涵和外延在不断变化,其在自动化系统中所扮演的角色会逐渐接近这一标准。
所以,在自动化系统中国内监控组态软件厂商承载着民族工业自动化产业的未来希望与核心竞争力。监控组态软件厂商要想承担起这样的重任,必须在上图所示各个层次的软件上拥有自己的核心竞争能力,确立在市场上的足够发言权和主动地位。中国的华为公司为我们树立了榜样,只要在后续技术创新、延长软件产品线上能够满足用户日益增长的各种需求,并保持原创性创新的长盛不衰,中国的工业自动化软件产业也一定会创造出工业IT界的华为奇迹。
c 平台化,模块化的软件技术
平台化,模块化类似于硬件技术的总线技术和PLC模块,他将软件的结构模式进行固化,让开发者象使用配置硬件一样方便的进行软件的配置,模块化的结构可以做到软件的轻量化,用户在购买和安装的时候可以进行选择,让我们实施自动化工程和攒机一样方便,平台类似于电脑的主板,功能模块类似于显卡,声卡。这种软件模式正在被越来越多的组态软件厂商所采用。如组态王,GENESIS 64
PLC的自动送料小车
摘 要
可编程序控制器(Programmable controller)简称PLC,由于PLC的可靠性高、环境适应性强、灵活通用、使用方便、维护简单,所以PLC的应用领域在迅速扩大。对早期的PLC,凡是有继电器的地方,都可采用。而对当今的PLC几乎可以说凡是需要控制系统存在的地方就需要PLC。尤其是近几年来,PLC的成本下降,功能又不段增强,所以,目前PLC在国内外已被广泛应用于各个行业。
本设计是为了实现送料小车的手动和自动化的转化,改变以往小车的单纯手动送料,减少了劳动力,提高了生产效率,实现了自动化生产!而且本送料小车的设计是由于工作环境恶劣,不允许人进入工作环境的情况下孕育而成的。
本文从第一章送料小车的系统方案的确定为切入点,介绍了为什么选用PLC控制小车;第二章介绍了送料小车的应达到的控制要求;第三章根据控制要求进行了小车系统的具体设计,包括端子接线图、梯形图(分段设计说明和系统总梯形图)和程序指令设计;最后得出结论。
关键词:PLC,送料小车,控制,程序设计
目 录
前 言 1
第1章 控制系统介绍和控制过程要求 2
11 控制系统在送料小车中的作用与地位 2
12 控制系统介绍 2
第2章 送料小车系统方案的选择 4
21 可编程控制器 PLC的优点 4
22 小车送料系统方案的选择 5
第3章 基于PLC的送料小车接线图及梯形图 6
31 送料小车PLC的 I/O分配表 6
32 PLC端子接线图 7
33 梯形图分段设计 8
34 程序运行原理说明调试与完善 13
35 系统总梯形图设计 13
36 小车程序设计 18
结 论 23
谢 辞 24
参考文献 25
前 言
随着社会迅速的发展,各机械产品层出不穷。控制系统的发展已经很成熟,应用范围涉及各个领域,例如:机械、汽车制造、化工、交通、军事、民用等。PLC专为工业环境应用而设计,其显著的特点之一就是可靠性高,抗干扰能力强。PLC的应用不但大大地提高了电气控制系统的可靠性和抗干扰能力,而且大大地简化和减少了维修维护的工作量。PLC以其可靠性高、抗干扰能力强、编程简单、使用方便、控制程序可变、体积小、质量轻、功能强和价格低廉等特点 ,在机械制造、冶金等领域得到了广泛的应用。
送料小车控制系统采用了PLC控制。从送料小车的工艺流程来看,其控制系统属于自动控制与手动控制相结合的系统,因此,此送料小车电气控制系统设计具有手动和自动两种工作方式。我在程序设计上采用了模块化的设计方法,这样就省去了工作方式程序之间复杂的联锁关系,从而在设计和修改任何一种工作方式的程序时,不会对其它工作方式的程序造成影响,使得程序的设计、修改和故障查找工作大为简化。
在设计该PLC送料小车设计程序的同时总结了以往PLC送料小车设计程序的一般方法、步骤,并且把以前学过的基础课程融汇到本次设计当中来,更加深入的了解了更多的PLC知识。
第1章 控制系统介绍和控制过程要求
11 控制系统在送料小车中的作用与地位
在现代化工业生产中,为了提高劳动生产率,降低成本,减轻工人的劳动负担,要求整个工艺生产过程全盘自动化,这就离不开控制系统。
控制系统是整个生产线的灵魂,对整个生产线起着指挥的作用。一旦控制系统出现故障,轻者影响生产线的继续进行,重者甚至发生人身安全事故,这样将给企业造成重大损失。
送料小车是基于PLC控制系统来设计的,控制系统的每一步动作都直接作用于送料小车的运行,因此,送料小车性能的好坏与控制系统性能的好坏有着直接的关系。送料小车能否正常运行、工作效率的高低都与控制系统密不可分。
12 控制系统介绍
图1-1 送料小车
本控制系统只要是用于控制送料小车的自动送料。它既能减轻人的劳动强度又能自动准确到达人不能达到或很难到达的预定位置。如图1-1,推车机可以沿轨道上下移动,到达预定位置。推车机上是一个小型泵站,通过控制电磁阀换向,使两油缸伸出、缩回,顶出送料小车,再由各个仓位控制要料。
用PLC对送料小车实现控制,其具体要求如下:
(1) 送料小车1动作要求:送料小车负责向四个料仓送料,送料路上从左向右共有4个料仓(位置开关SQ1,SQ2,SQ3,SQ4)分别受PLC的I00,I01,I02,I03检测,当信号状态为1是,说明运料小车到达该位置。小车行走受两个信号的驱动,Q04驱动小车左行,Q05驱动小车右行。料仓要料由4个手动按钮(SB1,SB2,SB3,SB4)发出(对应于PLC为I04,I05,I06,I07)按钮发出信号其相应指示灯就亮(HL1-HL4),指示灯受PLC的Q00-Q03控制。
送料小车2动作要求:送料小车负责向四个料仓送料,送料路上从左向右共有4个料仓(位置开关SQ11,SQ12,SQ13,SQ14)分别受PLC的I10,I11,I12,I13检测,当信号状态为1是,说明运料小车到达该位置。小车行走受两个信号的驱动,Q15驱动小车左行,Q14驱动小车右行。料仓要料由4个手动按钮(SB11,SB12,SB13,SB14)发出(对应于PLC为I14,I15,I16,I17)按钮发出信号其相应指示灯就亮(HL11-HL14),指示灯受PLC的Q10-Q13控制。
(2)运料小车行走条件:
运料小车右行条件:小车在1,2,3号仓位,4号仓要料;小车在1,2号仓位,3号仓要料;小车在1号仓位,2号仓要料。
运料小车左行条件:小车在4,3,2,0号仓位,1号仓要料;小车在4,3,0号仓位,2号仓要料;小车在4,0号仓位,3号仓要料;小车在0位,4号仓位要料。
运料小车停止条件:要料仓位与小车的车位相同时,应该是小车的停止条件。
运料小车的互锁条件:小车右行时不允许左行启动,同样小车左行时也不允许右行启动。
第2章 送料小车系统方案的选择
21 可编程控制器 PLC的优点
可编程控制器 PLC对用户来说,是一种无触点设备,改变程序即可改变生产工艺。目前,可编程控制器已成为工厂自动化的强有力工具,得到了广泛的推广应用。可编程控制器是面向用户的专用工业控制计算机,具有许多明显的特点。
1 可靠性高,抗干扰能力强
高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如西门子公司生产的S7系列PLC平均无故障时间高达30万小时。一些使用冗余CPU的PLC的平均无故障工作时间则更长。从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。
2 配套齐全,功能完善,适用性强
PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。
3 易学易用,深受工程技术人员欢迎
PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。
4 系统的设计、建造工作量小,维护方便,容易改造
PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。
5 体积小,重量轻,能耗低
以超小型PLC为例,新近出产的品种底部尺寸小于100 mm,重量小于150 g,功耗仅数瓦。由于体积小,很容易装入机械内部,是实现机电一体化的理想控制设备。
22 小车送料系统方案的选择
实现小车送料系统控制有很多方法来实现,可以用单片机、可编程控制器PLC等元器件来实现。
但在单片机控制系统电路中需要加入A/D,D/A转换器,线路复杂,还要分配大量的中断口地址。而且单片机控制电路易受外界环境的干扰,也具有不稳定性。另外控制程序需要具有一定编程能力的人才能编译出,在维修时也需要高技术的人员才能修复,所以在此也不易用单片机来实现。
而从上述第一节对PLC的特点了解可知,PLC具有很多优点,因此我们归纳出:可编程控制器PLC具有很高的可靠性,通常的平均无故障时间都在30万小时以上;安装, *** 作和维护也较容易;编程简单,PLC的基本指令不多,编程器使用比较方便,程序设计和产品调试周期短,具有很好的经济效益。此外PLC内部定时、计数资源丰富,可以方便地实现对送料小车的控制。
因此,最终我选择了用可编程控制器PLC来实现送料小车系统的控制,完成本次的设计题目。
第3章 基于PLC的送料小车接线图及梯形图
31 送料小车PLC的 I/O分配表
输入点分配 输出点分配
输入接点 输入开关名称 输出接口 驱动设备
I00-I03 小车1行程开关
(SQ1-SQ4) Q00-Q03 小车1要料指示灯
(HL1-HL4)
I04-I07 小车1控制按钮
(SB1-SB4) Q04-Q05 小车1左右行线圈
I10-I13 小车2行程开关
(SQ11-SQ14) Q06-Q07 油缸1伸出缩回
线圈
I14-17 小车2控制按钮
(SB11-SB14) Q10-Q10 小车2要料指示灯
(HL11-HL14)
I20-I25 推车机行程开关
(SQ5-SQ10) Q14-Q15 小车2左右行线圈
I26-I27 起动,停止按钮
(SB5,SB6) Q16-Q17 油缸2伸出缩回
线圈
I30-I31 手动,连续
转换开关(SA6,SA7) Q20-Q21 推车机上下行线圈
I32-I33 推车机上下,左右
转换开关 (SA1,SA2)
I34-I36 油缸单动联动
转换开关(SA3-SA5)
3-1 I/O分配表
根据控制要求,PLC控制送料小车的输入\输出(I\0)地址编排如下表所示,其中SB5为启动开关,为SB6停止开关,SA6、SA7为手动\连续选择开关,SA1、SA2为上下、左右转换开关,SA3、SA4、SA5为油缸单动联动转换开关。Q00-Q03和Q10-Q13控制8个要料指示灯,Q04-Q05和Q14-Q15控制小车1、2左行右行,Q06-Q07和Q16-Q17。如表3-1所示:
32 PLC端子接线图
PLC型号的选择:由于该系统是在原来CPU226的基础上改进的设备,而现在共用了31个输入,用直流24V;18个输出,用交流电220V,所以我选择用S7-200系列CPU226,加一个EM223的扩展模块。CPU226的主要的技术参数:输入24VDC,24点;输出220VAC,16点;电源电压为AC100—240V 50/60Hz。
EM223的主要技术参数:输入24VDC,8点;输出220VAC,8点;电源电压为AC100—240V 50/60Hz。如图3-1所示:
图3-1 端子接线图
33 梯形图分段设计
本次设计的自动送料小车梯形图,是分开来画的。由总程序结构图、自动 *** 作程序图、手动 *** 作程序图、小车1左右自动送料运行程序图、小车2左右自动送料运行程序图组成。
图3-2 总系统结构图
(1)程序的总结构图如图3-2所示:因为在手动 *** 作方式下,各种动作都是用按钮控制来实现的,其程序可独立于自动 *** 作程序而另行设计。因此,总程序可分为两段独立的部分:手动 *** 作程序和自动 *** 作程序。当选择手动 *** 作时,则输入点I30接通,其常闭触点断开,执行手动程序,并由于I31的常闭触点为闭合,则跳过自动程序。若选择自动 *** 作方式,将跳过手动程序段而执行自动程序。
(2)自动程序设计,自动 *** 作控制主要是由行程开关来控制推车机的上行、下行,两缸的伸出、缩回。通过行程开关的上限、下限、左限、右限准确的控制推车机到达预定位置。自动程序时,手动自动转换开关拨到连续档SA7,按下启动按钮SB6,推车机上行,碰到上位行车开关SQ6,上行停止;同时两个油缸动作,推动两小车向左移动,小车1、2碰到左位行程开关SQ10、SQ5,说明两小车到位,这时各个仓位可向小车要料;而且两油缸缩回,碰到行程右位开关SQ8、SQ9停止收缩,推车机下行到行程开关位SQ7时停止。如图3-3所示:
图3-3 自动 *** 作程序图
(3)手动 *** 作程序的设计,手动 *** 作控制简单,可按照一般继电器控制系统的逻辑设计法来设计。手动程序时,手动自动转换开关拨到手动档SA6,上下、左右转换开关拨到上/下行档时,按启动按钮SB5推车机上行,按停止按钮SB6推车机下行;上下、左右转换开关拨到左/右档时,拨动单动联动转换开关SA3(缸1动作),按启动按钮SB5,缸1伸出推动小车1左行;按停止按钮SB6,缸1缩回;拨动转换开关到SA5(缸2动作),按启动按钮SB5,缸2伸出推动小车2左行,按停止按钮SB6,缸2缩回;拨动单动联动转换开关到SA4(两缸同时动作)按启动按钮SB5,两缸伸出推动两小车左行;按停止按钮SB6,两缸缩回。如图3-4所示:
图3-4 手动 *** 作程序图
(4)小车1自动送料运行程序,把小车1送到指定位置后,四个仓位就可以向小车要料了,M00-M03分别代表小车1的1号料仓到4号料仓的要料状态,运料小车1当前所处位置由I00-I03,运料小车1的右行,左行,停止控制由Q04、Q05。小车到位后,用上微分 *** 作(P)来清除料仓要料状态信号及控制小车停车。(上微分 *** 作的注意事项,上微分脉冲只存在在一个扫描周期,接受这一脉冲控制的元件应写在这一脉冲出现的语句之后)。小车1自动送料图如下图3-5所示:
图3-5 小车1左右自动送料运行程序图
(5)小车2自动送料运行程序,把小车2送到指定位置后,四个仓位就可以向小车要料了,M10-M13分别代表小车2的1号料仓到4号料仓的要料状态。运料小车2当前所处位置由I10-I13,运料小车2的右行,左行,停止控制由Q14、Q15。小车到位后,用上微分 *** 作(P)来清除料仓要料状态信号及控制小车停车。
小车2自动送料图3-6所示:
图3-6 小车2左右自动送料运行程序图
34 程序运行原理说明调试与完善
本程序是用梯形图所写的。在运行前,先选择工作方式,手动/自动。选择手动SA6时,把上/下、左/右转换开关旋转到上/下档SA1,按下SB5起动点动按钮,推车机上行,按下SB6停止点动按钮,推车机下行;把上/下、左/右转换开关旋转到左/右档SA2,再选择小车的单动、联动控制,小车1单动时把单动/联动转换开关旋转到单动档SA3,两小车联动时旋转到联动档SA4,小车2单动时旋转到单动档SA5,这时按下起动按钮SB5,油缸推动小车左行,按下停止按钮SB6,油缸缩回。选择自动SA7时,按下起动按钮SB5,推车机开始上行,碰到上限行程开关SQ6时停车,两缸自动推出小车,小车碰到左限行程开关SQ5、SQ10时,说明小车到位,各个仓位可以向小车要料,这时两缸自动缩回,碰到右限行程开关SQ8、SQ9时,推车机自动下行,下行到位后(碰到SQ7)停车。只有再次按下起动按钮SB5,才能再次运行。
手动程序中设置了联锁和保护电路。如推车机的上行、下行常闭触点的联锁,推车机上下行行程有行程开关SQ6、SQ7控制保护。自动程序是根据推车机的位置、油缸的位置来控制电路执行下一条指令的。
油缸把小车推到位后,小车处于准备送料的初始位置,这时1-4号仓位都可以向小车要料。本设计中要料时刻不同时,先要料者优先,但是要料时刻相同时,却不知道小车向哪个仓位送料,需要改进。
35 系统总梯形图设计
由以上,我们画出送料小车系统的总梯形图,其中包括推车机的手动控制程序、自动控制程序、送料小车1控制程序、送料小车2控制程序。
如下图3-7所示:
图3-7送料小车梯形图(a)
图3-7 送料小车梯形图(b)
图3-7 送料小车梯形图(c)
图3-7 送料小车梯形图(d)
36 小车程序设计
由系统总梯形图,我们写出送料小车的程序指令,如下表3-2所示:
表3-2 送料小车程序指令表
LDN I30 A I33
JMP 0 A I26
LD I32 AN I24
LPS = Q16
A I26 LD I24
AN I20 O M22
= Q20 AN I13
LPP = M22
A I27 LD I34
AN I21 O M20
= Q21 A I33
LD I35 A I27
= M20 AN I22
LD I34 = Q07
O M20 LD I36
A I33 O M20
A I33 A I33
A I26 A I27
AN I25 AN I23
= Q06 = Q17
LD I25 LBL 0
O M21 LDN I31
AN I03 JMP 1
= M21 LD I26
LD I36 O Q20
O M20 AN I20
AN Q21 O Q17
AN I27 AN I23
= Q20 AN Q16
LD I20 AN I27
O Q06 = Q17
AN I25 LD I25
AN Q07 AN I24
AN I27 O Q21
= Q06 AN Q20
LD I25 AN I21
O M21 AN I27
AN I03 = Q21
= M21 LBL 1
LD I20 LD I04
O Q16 AN M01
AN I24 AN M02
AN Q17 AN M03
AN I27 S M00 1
= Q16 S Q00 1
LD I24 LD I05
O M22 AN M00
AN I13 AN M02
= M22 AN M03
LD I25 S M01 1
O Q07 S Q01 1
AN I22 LD I06
AN Q06 AN M00
AN I27 AN M01
= Q07 AN M03
LD I24 S M02 1
S Q02 1 A I05
LD I07 OLD
AN M00 AN Q05
AN M01 S Q04
AN M02 LD I03
S M03 1 O I02
S Q03 1 O I01
LD I00 O M21
A M00 A I04
LD I01 LD I03
A M01 O I02
OLD O M21
LD I02 A I05
A M02 OLD
OLD LD I03
LD I03 O M21
A M03 A I06
OLD OLD
EU LD M21
R Q00 6 A I07
R M00 4 OLD
LD I00 AN Q04
O I01 S Q05 1
O I02 LD I14
A I7 AN M11
LD I00 AN M12
O I01 AN M13
A I06 S M10 1
OLD S Q10 1
LD I00 LD I15
AN M10 LD I10
AN M12 O I11
AN M13 O I12
S M11 1 A I17
S Q11 1 LD I10
LD I16 O I11
AN M10 A I16
AN M11 OLD
AN M13 LD I10
S M12 1 A I15
S Q12 1 OLD
LD I17 AN Q15
AN M10 S Q14 1
AN M11 LD I13
AN M12 O I12
S M13 1 O I11
S Q13 1 O M22
LD I10 A I14
A M10 LD I13
LD I11 O I12
A M11 O M22
OLD A I15
LD I12 OLD
A M12 LD I13
OLD O M22
LD I13 A I16
A M13 OLD
EU LD M22
R Q10 6 A I17
R M10 4 OLD
AN Q14
S Q15 1
结 论
在做这个设计中,我学会了很多以前没学过的知识,也巩固了很多以前没学好的知识,使我的专业理论知识更加扎实,软件 *** 作更加熟练了。做完这个设计后,我得出几个结论如下:
一、送料小车在硬件设计中,加入了扩展模块,可以在触点不够的情况下方便地实现该小车的系统控制;然后软件设计中,运用了上微分指令,简化了程序,还运用了互锁和联锁,确保了系统的正常运行,减少了系统的故障点。在送料小车的系统中加入了手动 *** 作程序,便于设备的维修,方便 *** 作人员 *** 作。
二、该小车系统在实施的情况下,其成本价格比较高。
三、该小车控制系统的研究方向:由于本小车系统并不完善,只做了送料,没有设计小车怎么装料和小车到料仓后送料的多少。这两方面是该系统设计的完善,是将来的研究方向。
最后,经过这次毕业设计培养了我们的设计能力以及全面的考虑问题能力。学习的过程是痛苦的但是收获成功的喜悦更是让人激动的。相信通过这次毕业设计它对我以后的学习及工作都会产生积极的影响。
谢 辞
本论文是在余炳辉导师亲自指导下完成的。导师在学业上给了我很大的帮助,使我在设计过程中避免了许多无为的工作。导师一丝不苟、严谨认真的治学态度,精益求精、诲人不倦的学者风范,以及正直无私、磊落大度的高尚品格,更让我明白许多做人的道理,在此我对导师表示衷心的感谢!
本论文能够完成,要感谢机电学院的所有老师,是他们在这三年的时间里,教会我的专业知识。在我撰写论文期间,得到了我的指导老师的帮助,在忙碌的工作之余,给予我专业知识上的指导,而且教给我学习的方法和思路,使我在科研工作及论文设计过程中不断有新的认识和提高。导师为论文课题的研究提出了许多指导性的意见,为论文的撰写、修改提供了许多具体的指导和帮助。多得他们的指导和帮助才使我能完成本论文。我会在以后的工作中为社会作出贡献去回报他们对我的教导。希望每个人都和我一样,通过做毕业设计,能够学到很多的知识与道理,大家都能用一颗热诚的心去投身未来的工作,报效祖国、父母、老师。
在本文结束之际,特向我敬爱的导师和机电学院所有老师致以最崇高的敬礼和深深的感谢!
参考文献
[1] 张结,黄德斌,唐毅应用标准与IEC61850的引用和兼容关系电力系统自动化,2004,28(19):88~91
[2] 朱永利,黄歌,刘培培等基于IEC61850的电力远动信息网络化传愉的研究继电器,2005,33(11):45~48
[3] 章宏甲,黄谊,王积伟.液压与气压传动北京:机械工业出版社, 2002:112~118
[4] 成大先.机械设计手册(液压控制)单行本北京:化学工业出版社, 2004:20~21
[5] 廖常初PLC基础及应用北京:机械工业出版社,2003:57~64
[6] 储云峰.西门子电气可编程序控制器原理及应用北京:机械工业出版社,2006:75~84
[7] 汪巍,汪小凤基于PLC的气动机械手研究辽宁工程技术大学学报,2005,4(12):97~98
[8] 丁筱玲,赵立新 PLC在机械手控制系统上的应用山东农业大学学报,2006,37(1):105~108
[9] 常斗南,王健琪,李全力可编程控制原理应用及通信基础北京:机械工业出版社,1997:50~68
[10]王本轶.机电设备控制基础北京:机械工业出版社,2005:96~112
[11]王春行.液压控制系统北京:机械工业出版社,1999:12~45
[12]王永华.现代电气控制及 PLC 应用技术北京:北京航空航天大学出版社,2003:75~90
[13]陈立定电器控制于可编程控制器广州:华南理工大学出版社,2001:67~77
[14]张林国,王淑英可编程控制器技术北京:高等教育出版社,2002:110~123
[15]周万珍,高鸿宾PLC分析与设计应用北京:电子工业出版社,2004:21~45
APPId可以分为两个字:App和Id。App是指手机软件,Id是指手机软件账号(即手机软件登录时的有效账号)。二者合二为一的意思就是指手机软件账号编码。
AppID为应用的唯一标识,即applicationidentification(应用识别;应用辨识),是用来标记你的开发者账号的,是你的用户id,这个id在数据库添加检索,方便快速查找。
扩展资料:
AppId应用标识:
AppID:applicationidentification。
TheattributeAppIDshallbeavisiblestringthatrepresentsaLOGICAL-DEVICEinwhichtheGOCBislocatedthedefaultvalueofAppIDshallbethatoftheObjectReferenceofaGoCB(IEC61850-7-1)。
AppID用以选择含有GSE管理和GOOSE 报文的信息的ISO/IEC8802-3帧,以及区分应用关联。
可视为“主题”,即订阅者通过APPID判断报文中信息是否为自己所需。
GOOSE报文中AppID范围为0x0000-0x3FFF。
参考资料:
百度百科-App手机软件(应用程序,Application的缩写)
百度百科-id(身份标识号)
百度百科-APPID
以上就是关于组态软件的发展趋势全部的内容,包括:组态软件的发展趋势、plc毕业论文设计、AppID是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)