蜜蜂的一系列问题

蜜蜂的一系列问题,第1张

蜜蜂 英文名:Bee Honeybee

昆虫纲膜翅目蜜蜂总科的通称。有产蜜价值并广泛饲养的主要是西方蜜蜂(Apis mellifera)(以意大利蜂为代表) 和东方蜜蜂(Apis cerana)(以中华蜜蜂为代表)。有前胸背板不达翅基片,体被分枝或羽状毛,后足常特化为采集花粉的构造的蜂类。成虫体被绒毛,足或腹部具有长毛组成的采集花粉器官。口器嚼吸式,是昆虫中独有的特征。全变态。全世界已知约15万种,中国已知约1000种 。有不少种类的产物或行为与医学(如蜂蜜、王浆)、农业( 如作物传粉 )、工业( 如蜂蜡、蜂胶)有密切关系,它们被称为资源昆虫。

膜翅目(Hymenoptera)细腰亚目(Apocrita)昆虫,约有20,000种,包括众人熟悉的蜜蜂(蜜蜂属〔Apis〕)和熊蜂(熊蜂属〔Bombus〕及拟熊蜂属〔Psithyrus〕),以及上千种类似黄蜂和苍蝇的蜜蜂。成蜂体长约2公厘∼4公分(约008∼16吋)。

蜜蜂与某些种的黄蜂近缘,两者在生物学上主要的差别在蜜蜂(除了寄生的蜜蜂外)以一种花粉与花蜜的混合物餵养幼蜂,而黄蜂则以动物性食物或以昆虫和蜘蛛来餵养幼蜂。除了对食物偏好的差异外,还有一些结构之差异,最基本的不同是黄蜂覆盖著无分支的毛发,而蜜蜂至少有一些分支或羽毛状的毛发,花粉通常黏附其上。

蜜蜂完全以花为食,包括花粉及花蜜,后者有时调制储存成蜂蜜。毫无疑问的是蜜蜂在采花粉时亦同时对它授粉,当蜜蜂在花间采花粉时,会掉落一些花粉到花上。这些掉落的花粉关系重大,因它常造成植物的异花传粉。蜜蜂身为传粉者的实际价值比其制造蜂蜜和蜂蜡的价值更大。

雄蜂通常寿命不长,不采花粉,亦不负责喂养幼蜂。工蜂负责所有筑巢及贮存食物的工作,而且通常有特殊的结构组织以便於携带花粉。大部分蜜蜂采多种花的花粉,不过,有些蜂只采某些科的花的花粉,有的只采某种颜色花的花粉,还有一些蜂只采一些有亲缘关系的花之花粉。蜜蜂的口部是花粉采集和携带的器具,似乎能适应各种不同种类的花。

蜜蜂总科(Apoidea)的大部分蜜蜂是独栖或非社会性的,如它们不住在一起,每一雌蜂造自己的巢(通常在地底洞穴)及贮存粮食,这种蜜蜂没有阶级之分。一些独栖的蜜蜂在巢口筑烟囱或角塔,也有一些在树上或细枝、竹子里筑巢。大部分独栖成蜂的寿命均不长。有些种的成蜂一年里飞行的时间只有数周,而其余的时间则是以卵、幼体、蛹及幼蜂的形态留在巢室中。

独栖蜂供应幼体在封室时需要完全发育的所有食物。群居蜂如熊蜂与蜜蜂,则是采渐进式的餵养幼体。关於社会性昆虫的生活环,参阅熊蜂(bumblebee)、蜜蜂(honeybee)各条。

蜜蜂总科共有8个科∶1 分舌蜂科(Colletidae),是较原始的类群,黄蜂状,有5或6个亚科,约45属3,000种;2 地花蜂科(Andrenidae),体型中等且独栖的地花蜂,包括一些寄生种;3 集蜂科(Halictidae, 地花蜂或打洞蜂),某些种会被汗液吸引,故又称汗蜂,最著名的汗蜂是Dialictus zephyrus; 4 Oxaeidae科,一种体型大、飞行速度快的蜜蜂,构造类似地花蜂科的蜜蜂;5 准蜜蜂科(Melittidae),介於低等与高等间的一种过渡蜂;6 切叶蜂科(Megachilidae, 切叶蜂、泥匠蜂),以其精巧的筑巢结构而著名;7 Anthophoridae科(包括木匠蜂和布谷蜂),有3个亚科的大科,曾一度被认为是蜜蜂科的一个亚科;8 蜜蜂科(Apidae),包括熊蜂、挖地蜂或地花蜂。

所谓的「杀人蜂」是介於非洲蜜蜂和欧洲蜜蜂亚种之间的一个杂交种。此种非洲化的蜜蜂亚种於1957年在巴西培育一种适应热带气候且多产的杂交蜂时,意外逃出北飞,一年能飞约320∼480公里(200∼300哩),1980年代飞至墨西哥,1990年飞抵德克萨斯州。如今广布美国西南大部分地区,包括加利福尼亚州南部、内华达州南部,以及亚利桑那州全境。此外,在佛罗里达州已发现一群数量逐渐增多的非洲化蜜蜂。咸信它们造成数百人死亡。这种非洲化蜜蜂的体型较欧洲种小,对植物的传粉作用也不大。虽然毒性不强,但对栖地受到威胁反应快,采群攻,穷追不舍的时间较长,距离更远,需时甚久才能平息。

生活习性

蜂在巢室内产卵,幼虫在巢室中生活,营社会性生活的幼虫由工蜂喂食,营独栖性生活的幼虫取食雌蜂贮存于巢室内的蜂粮,待蜂粮吃尽,幼虫成熟化蛹,羽化时破茧而出。家养蜜蜂一年繁育若干代,野生蜜蜂一年繁育1~3代不等。以老熟幼虫、蛹或成虫越冬 。 一般雄性出现比雌性早,寿命短,不承担筑巢、贮存蜂粮和抚育后代的任务。雌蜂营巢、采集花粉和花蜜,并贮存于巢室内,寿命比雄性长。

蜜蜂以植物的花粉和花蜜为食。食性可分为3类 :①多食性,即在不同科的植物上或从一定颜色的花上(不限植物种类)采食花粉和花蜜,如意蜂和中蜂。② 寡食性,即自近缘科、属的植物花上采食,如苜蓿准蜂。③单食性,即仅自某一种植物或近缘种上采食,如矢车菊花地蜂。蜜蜂各种类采访的花朵与口器的长短有密切关系:例如隧蜂科、地蜂科、分舌蜂科等口器较短的种类采访蔷薇科、十字花科、伞形科、毛茛科开放的花朵;而切叶蜂科、条蜂科和蜜蜂科的种类由于口器较长,则采访豆科、唇形科等具深花管的花朵。

生活方式分为3种:

社会性。雌雄和职蜂生活在同一巢中,但在形态、生理和劳动分工方面均有区别。雌性个体较大,专营产卵生殖;雄性较雌性小,专司交配,交配后即死亡;工蜂个体较小,是生殖器发育不全的雌蜂,专司筑巢、采集食料、哺育幼虫、清理巢室和调节巢湿等。意蜂和中蜂都是社会性种类。此外还有熊蜂属、热带无刺蜂属、麦蜂属等。

独栖性。蜜蜂类绝大多数为独栖性,即工蜂独自筑巢和采粉贮粮,它们没有"等级"的分化。每一个巢室是开放的,内壁涂以蜡等防潮物质,室中储存足够的蜂粮。雌蜂在蜂粮上产卵,并封闭巢室。幼虫在巢内取食蜂粮。属于此类的大多是野生种类,例如分舌蜂科、地蜂科、隧蜂科、准蜂科、切叶蜂和条蜂科。

寄生性。雌蜂不筑巢,在寄主的巢内产卵。幼龄幼虫一般具有大的头和上颚,用以破坏寄主的卵或幼龄幼虫。

蜜蜂的筑巢本能复杂,筑巢地点、时间和巢的结构多样。筑巢时间一般在植物的盛花期。根据筑巢的地点和巢的质地,可分为以下几类:①营社会性生活的种类以自身分泌的蜡作脾,如蜜蜂属、无刺蜂属、麦蜂属等。巢室为六角形。②在土中筑巢的种类最多,巢室内部涂以蜡和唾液的混合物,以保持巢室内的湿度。③利用植物组织筑巢的更为多样,例如切叶蜂属可把植物叶片卷成筒状成为巢室,置放于自然空洞中;黄斑蜂属利用植物茸毛在茎上作成疣状的巢;芦蜂属和叶舌蜂属在枯死的植物茎干内筑巢;熊蜂属的一些种类在树林的枯枝落叶下营巢;木蜂属在木材中钻孔为巢,等等。④其他如石蜂属利用唾液将小砂石粘连成巢,壁蜂属在蛞蝓壳内筑巢等等。

蜂巢一般是零星分散的,但也有同一种蜜蜂多年集中于一个地点筑巢,从而形成巢群。例如,毛足蜂属的巢口数可达几十个甚至达几百个。

[编辑本段]地理分布

蜜蜂类的地理分布取决于蜜源植物的分布。全世界均有分布,而以热带、亚热带种类较多。不同亚科或属的分布有一定局限性,例如蜜蜂科的熊蜂以北温带为主,可延伸到北极地区,而在热带地区则无分布记录。短舌蜂科分布于澳大利亚;蜜蜂科木蜂族的突眼木蜂亚属只分布于中亚;蜜蜂科的无刺蜂属则分布于热带。不同景观均有蜜蜂分布,大多数栖居在草原、森林、河谷、山地和荒漠。各景观带均有代表属或种,例如地熊蜂为森林草原种,拟地蜂属为典型的草原属,准蜂属以草原种居多。

[编辑本段]分类与进化

根据化石资料,蜜蜂在第三纪晚始新世地层中已大量发现。它的出现与白垩纪晚期显花植物的繁盛密切相关。

在分类上,蜜蜂总科与泥蜂总科接近,其祖先可能起源于泥蜂总科的一支 。但因食性不同 ,形态特征也趋向分化。蜜蜂的进化特点是:嚼吸式口器,采粉器官形成,体毛分枝;成、幼期均吃花蜜和花粉;群体和社会性生活方式出现;多态型和总科内寄生性的出现等。

在昆虫纲中,蜜蜂属于高级进化的类群。社会性生活方式的出现,“语言”信息的传递,通过“舞蹈”动作辨认蜂巢的方法,以及巢的不同结构等。

[编辑本段]经济意义

蜜蜂是对人类有益的昆虫类群之一,通常广泛指的是生产用蜂种:西方蜜蜂和中华蜜蜂。它为农作物、果树、蔬菜、牧草、油茶作物和中药植物传粉,产量可增加几倍至20倍。蜂蜜是人们常用的滋补品,有“老年人的牛奶”的美称;蜂花粉被人们誉为“微型营养库”,蜂王浆更是高级营养品,不但可增强体质,延长寿命,还可治疗神经衰弱、贫血、胃溃疡等慢性病;蜂毒对风湿、神经炎等均有疗效;蜂蜡和蜂胶都是轻工业的原料。

在蜜蜂社会里,它们仍然过着一种母系氏族生活。蜜蜂一生要经过卵、幼虫、蛹和成虫四个变态过程。在它们这个群体大家族的成员中,有一个蜂王(蜂后),它是具有生殖能力的雌蜂,负责产卵繁殖后代,同时“统治”这个大家族。蜂王虽然经过交配,但不是所产的卵都受了精。它可以根据群体大家族的需要,产下受精卵工蜂喂以花粉、蜂蜜21天后发育成雌蜂(没有生殖能力的工蜂);也可以产下未受精卵,24天后发育成雄蜂。当这个群体大家族成员繁衍太多而造成拥挤时,就要分群。分群的过程是这样的:由工蜂制造特殊的蜂房 —— 王台,蜂王在王台内产下受精卵;小幼虫孵出后,工蜂给以特殊待遇,用它们体内制造的高营养的蜂王浆饲喂,16天后这个小幼虫发育为成虫时,就成了具有生殖能力的新蜂王,老蜂王即率领一部分工蜂飞去另成立新群。中华蜜蜂Apis cerana Fabr和意大利蜜蜂A mellifera L都是普遍饲养的益虫,在饲养过程中,新蜂王出世后就要人工替它分群,否则会有一个蜂王带领一批工蜂离开蜂巢飞走而损失蜂群的生产力。

蜜蜂的飞翔时速为20-40千米,高度1千米以内,有效活动范围在离巢25千米以内。所有的蜜蜂都以花粉和花蜜为食,采集花蜜是一项十分辛苦的工作,蜜蜂采访1100-1446朵花才能获得1蜜囊花蜜,在流蜜期间1只蜜蜂平均日采集10次,每次载蜜量平均为其体重的一半,一生只能为人类提供06克蜂蜜。花蜜被蜜蜂吸进蜜囊的同时即混入了上颚腺的分泌物——转化酶,蔗糖的转化就从此开始,经反复酿制蜜汁并不停的扇风来蒸发水份,加速转化和浓缩直至蜂蜜完全成熟为止。根据种类的不同,工蜂的数量一般在12只到50000多只的范围内,它们收集花蜜和花粉,如果是蜜蜂,还会将花蜜和花粉传送到特定的地方,这要通过跳特殊而严格的舞蹈而获得。他们的职责包括酿蜜,做蜡状蜂房的巢室,这些都是为食物存储和幼虫居住,还有照顾蜜蜂和蜂王,守扩蜂巢。蜜蜂是一个多年生群体,将会不断地有新蜂王被抚养起来,老蜂王然后和一群工蜂离开蜂房到别的地方重建一个家。

雄蜂数目很多,在一群体内可能近千个。雄蜂的唯一职责是与蜂王交配,交配时蜂王从巢中飞出,全群中的雄蜂随后追逐,此举称为婚飞。蜂王的婚飞择偶是通过飞行比赛进行的,只有获胜的一个才能成为配偶。交配后雄蜂的生殖器脱落在蜂王的生殖器中,此时这只雄蜂也就完成了它一生的使命而死亡。那些没能与蜂王交配的雄蜂回巢后,只知吃喝,不会采蜜,成了蜂群中多余的懒汉。日子久了,众工峰就会将它们驱逐出境。养蜂人也不愿意在蜂群内保留过多的雄蜂而消耗蜂蜜,因而对它们进行人工淘汰。由此看来,工蜂在这个群体中数量最多。养蜂者对一个蜂群中保持的工蜂多少,因不同季节而异,一般为2万一5万个工蜂。工蜂是最勤劳的,儿歌唱的“小蜜蜂,整天忙,采花蜜,酿蜜糖”,仅是指工蜂说的。除采粉、酿蜜外,筑巢、饲喂幼虫、清洁环境、保卫蜂群等;也都是工蜂的任务。 从春季到秋末,在植物开花季节,蜜蜂天天忙碌不息。冬季是蜜蜂唯一的短暂休闲时期。但是,寒冷的天气、蜂巢内的低温,对蜜蜂是不利的,因为蜜蜂是变温动物,它的体温随着周围环境的温度改变。智慧不凡的小蜜蜂想出了特殊的办法抵御严寒。当巢内温度低到13℃时,它们在蜂巢内互相靠拢,结成球形团在一起,温度越低结团越紧,使蜂团的表面积缩小,密度增加,防止降温过多。据测量,在最冷的时候,蜂球内温度仍可维持在24℃左右。同时,它们还用多吃蜂蜜和加强运动来产生热量,以提高峰巢内的温度。天气寒冷时,蜂球外表温度比球心低,此时在好球表面的蜜蜂向球心钻,而球心的蜂则向外转移,它们就这样互相照顾,不断地反复交换位置,渡过寒冬。在越冬结球期间它们是怎样去取食存放在蜂房中的蜜糖的呢聪明的小蜜蜂自有妙法。它们不需解散球体,各自爬出取食,而是通过互相传递的办法得到食料。养蜂者用人为办法生产蜂王浆,实际上就是用人工制做一些王台,放入蜂箱内,供蜂王产卵,待小幼虫孵出,工蜂们用蜂王浆饲喂时,养蜂人即将蜂王浆取出,这技术其实是骗术,可见就连聪明的小蜜蜂也有受骗的时候。

[编辑本段]繁殖方式

蜂王(雌性)产卵,部分卵细胞不经过受精作用直接发育成雄蜂(孤雌生殖)。成熟的雄蜂给卵细胞提供精子,使卵细胞受精形成受精卵。受精卵发育成幼蜂之后,少部分幼蜂可以吃到高品质蜂皇浆,继而长成蜂王;大多数幼蜂只能吃到低品质蜂蜜,后发育成工蜂。

[编辑本段]蜜蜂分工

蜜蜂是三型分工:

蜂王:

蜂王的任务是产卵,分泌的蜂王物质激素可以抑制工蜂的卵巢发育,并且影响蜂巢内的工蜂的行为。蜂王是由工蜂建造王台用受精卵培育而成的。工蜂对蜂王台里的受精卵特别照顾,一直到幼虫化蛹以前始终饲喂蜂王浆,使蜂王幼虫浸润在王浆上面。蜂王浆含有丰富的蛋白质、维生素和生物激素,对蜂王幼虫的生长发育,特别是对雌性生殖器官的发育起重要的促进作用。随着蜂王幼虫的生长,工蜂把台基加高,最后封盖。

羽化出房的新蜂王身体柔嫩,由工蜂给它梳理身上的绒毛,交配成功的处女王不久便开始产卵。处女蜂王交尾后除了分蜂以外,一般不再出巢。蜂王体型细长而稳重,它的寿命一般在三至五年,最长的可活八九年。在春天和花期前后产卵量最高。

雄蜂:

雄蜂的任务是和处女王交配后繁殖后代,雄蜂不参加酿造和采集生产,个体比工蜂大些。雄蜂是由未受精卵发育而成的。在较大雄蜂房里发育,工蜂对它的哺育也较好。整个发育过程。雄蜂幼虫的食量要比工蜂幼虫大一、二倍。雄蜂生殖系统的发育需要较长的时间,羽化出房后还要经过八至十四天左右才能达到性成熟。雄蜂性成熟时,其精巢内的精小管有大量的精子成熟,并逐步地排到贮精囊中,一般一个雄蜂的贮精囊中的精液量为15——20μL(微升)。每微升精液平均有精子七百五十万个。精子的数量和活力对蜂群后代的遗传性状和发育具有直接影响。因此,选育优质遗传后代的种群做父本与选择优质蜂王同等重要。

工蜂:

工蜂的任务主要是采集食物、哺育幼虫、泌蜡造脾、泌浆清巢、保巢攻敌等工作。蜂巢内的各种工作基本上全是工蜂们干的;工蜂与蜂王一样也是由受精卵发育成的。哺育工蜂对它们的照料不如对蜂王幼虫那样周到,仅在孵化后的头三天内饲喂蜂王浆,而自第四天起就只饲喂蜜粉混合饲料。因为这种饲料的营养不如蜂王浆高,而且缺乏促进卵巢发育的生物激素。因此,工蜂的生殖器官发育受到抑制,直到羽化为成蜂,其卵巢内仅有数条卵巢管,失去了正常的生殖机能。所以,她们是发育不完全的雌性蜂,

工蜂的寿命一般是三十至六十天。在北方的越冬期,工蜂较少活动,并且没有参加哺育幼虫的越冬蜂可以活到五至六个月。每群的工蜂量决定于蜂群的兴盛。

参考资料:

中华蜂疗网)

[编辑本段]其他有关蜜蜂

一只蜜蜂酿吐一公斤的蜜,要用上三万三千三百三十三个工作小时,吮吸三千三百三十三朵花蕊。

要酿出500克蜂蜜,工蜂需要来回飞行3万7千次去发现并采集花蜜,带回蜂房。

蜜蜂的翅膀每秒可扇动200至400次。

蜜蜂飞行的最高时速是40公里。当它满载而归时,飞行时速为20至24公里。

一个蜂巢平均有5万个蜂房,居住着3万5千只忙碌的蜜蜂。

一只蜜蜂毛茸茸的身体上能粘住5万至75万粒花粉。

一汤匙蜂蜜可以为蜜蜂环绕地球飞行一圈提供足够的能量。

夏季工蜂的寿命是38天,冬季它们的寿命是6个月。

蜂王的寿命一般是4至5年。

借助5只复眼和3只单眼,蜜蜂的视角几乎可以达到360度。

1,舞蹈语言;

2,蜜蜂还会及时变换指数,依靠天空反射的偏振光束来确定方位,及时回巢;

3,利用翅的不断振动自发出不同频率的“嗡嗡”声,用来补充“舞蹈语言”的不足和加强语气的表达能力。

昆虫的舞蹈语言在传递信息的过程中起着主要作用,这种作用在蜜蜂中表现尤其突出,在蝴蝶中也很明显。

在蜜蜂的社会生活中,工蜂担负着筑巢、采粉、酿蜜、育儿的繁重任务。大批工蜂出巢采蜜前先派出“侦察蜂”去寻找蜜源。侦察蜂找到距蜂箱100米以内的蜜源时,即回巢报信,除留有追踪信息外,还在蜂巢上交替性地向左或向右转着小圆圈,以“圆舞”的方式爬行。如果蜜源在距蜂箱百米以外,侦察蜂便改变舞姿,呈“∞”字,所以也叫“8字舞”或“摆尾舞”。如果将全部爬行路线相连,直线爬行的时间越长,表示距离蜜源越远。直线爬行持续1秒钟,表示距离蜜源约500米;持续2秒,则约l000米。侦察蜂在做这种表演时,周围的工蜂会伸出头上的触角争先与舞蹈者的身体碰撞,这也许是从它那里了解信息吧。侦察蜂跳的“摆尾舞”,不但可以表示距离蜜源的远近,也起着指定方向的作用。蜜源的方向是靠跳“摆尾舞”时的中轴线在蜂巢中形成的角度来表示的。如遇阴雨天,利用舞蹈定位的方法就有点失灵。蜜蜂还会及时变换指数,依靠天空反射的偏振光束来确定方位,及时回巢。人们也许要问,工蜂在黑洞洞的蜂箱里表演的各种舞蹈动作,其他同伙是怎样领会到的呢原来它们是利用头上颤抖的触角抚摸工蜂身体时,使“舞蹈语言”转换成“接触语言”而获得信息的。这种传递方法,有时也会失灵。为此它们还要利用翅的不断振动自发出不同频率的“嗡嗡”声,用来补充“舞蹈语言”的不足和加强语气的表达能力。

蜜蜂的主要天敌是胡蜂所有的蜜蜂都以花粉和花蜜为食。在消化道中花蜜可以被转化成蜂蜜。所有的雌蜜都有一种刺。蜜蜂和大蜂(一种体积较大的、较圆的蜂,身子是黑色的)都是昆虫,但是这种种类的蜂大多数都是单独居住,有一些蜂住在别的蜜蜂的蜂窝里,并且从别的蜂那里获得食物。蜜蜂这个典型的群体有一个能产卵的蜂王,性别上未发展进化的雌蜂(工蜂);还有许多能生育的雄蜂。

根据种类的不同,工蜂的数量一般在12只到50000多只的范围内,它们收集花蜜和花粉,如果是蜜蜂,还会将花蜜和花粉传送到特定的地方,这要通过跳特殊而严格的舞蹈而获得。他们的职责包括酿蜜,做蜡状蜂房的巢室,这些都是为食物存储和幼虫居住,还有照顾蜜蜂和蜂王,守扩蜂巢。蜜蜂是一个多年生群体。将会不断地有新蜂王被抚养起来。老蜂王然后和一群工蜂离开蜂房到别的地方重建一个家。蜜蜂非常有用。因为他们也能像传花粉给植物的昆虫一样行动

雄蜂数目很多,在一群体内可能近千个。雄蜂的唯一职责是与蜂王交配,交配时蜂王从巢中飞出,全群中的雄蜂随后追逐,此举称为婚飞。蜂王的婚飞择偶是通过飞行比赛进行的,只有获胜的一个才能成为配偶。交配后雄蜂的生殖器脱落在蜂王的生殖器中,此时这只雄蜂也就完成了它一生的使命而死亡。那些没能与蜂王交配的雄蜂回巢后,只知吃喝,不会采蜜,成了蜂群中多余的懒汉。日子久了,众工峰就会将它们驱逐出境。养蜂人也不愿意在蜂群内保留过多的雄蜂而消耗蜂蜜,因而对它们进行人工淘汰。由此看来,工蜂在这个群体中数量最多。养蜂者对一个蜂群中保持的工蜂多少,因不同季节而异,一般为2万一5万个工蜂。工蜂是最勤劳的,儿歌唱的“小蜜蜂,整天忙,采花蜜,酿蜜糖”,仅是指工蜂说的。除采粉、酿蜜外,筑巢、饲喂幼虫、清洁环境、保卫蜂群等;也都是工蜂的任务。 从春季到秋末,在植物开花季节,蜜蜂天天忙碌不息。冬季是蜜蜂唯一的短暂休闲时期。但是,寒冷的天气、蜂巢内的低温,对蜜蜂是不利的,因为蜜蜂是变温动物,它的体温随着周围环境的温度改变。智慧不凡的小蜜蜂想出了特殊的办法抵御严寒。当巢内温度低到13℃时,它们在蜂巢内互相靠拢,结成球形团在一起,温度越低结团越紧,使蜂团的表面积缩小,密度增加,防止降温过多。据测量,在最冷的时候,蜂球内温度仍可维持在24℃左右。同时,它们还用多吃蜂蜜和加强运动来产生热量,以提高峰巢内的温度。天气寒冷时,蜂球外表温度比球心低,此时在好球表面的蜜蜂向球心钻,而球心的蜂则向外转移,它们就这样互相照顾,不断地反复交换位置,渡过寒冬。在越冬结球期间它们是怎样去取食存放在蜂房中的蜜糖的呢聪明的小蜜蜂自有妙法。它们不需解散球体,各自爬出取食,而是通过互相传递的办法得到食料。这样可保持球体内的温度不变或少变,以利于安全越冬。

蜜蜂属膜翅目、蜜蜂科。一生要经过卵、幼虫、蛹和成虫四个虫态。

在蜜蜂社会里,它们仍然过着一种母系氏族生活。在它们这个群体大家族的成员中,有一个蜂王(蜂后),它是具有生殖能力的雌蜂,负责产卵繁殖后代,同时“统治”这个大家族。蜂王虽然经过交配,但不是所产的卵都受了精。它可以根据群体大家族的需要,产下受精卵将来发育成雌蜂(没有生殖能力的工蜂);也可以产下末受精卵,将来发育成雄蜂。当这个群体大家族成员繁衍太多而造成拥挤时,就要分群。分群的过程是这样的:由工蜂制造特殊的蜂房 —— 王台,蜂王在王台内产下受精卵;小幼虫孵出后,工蜂给以特殊待遇,用它们体内制造的高营养的蜂王浆饲喂,待这个小幼虫发育为成虫时,就成了具有生殖能力的新蜂王。新蜂王即率领一部分工蜂飞去另成立新群。中华蜜蜂Apis cerana Fabr和意大利蜜蜂A mellifera L都是普遍饲养的益虫。在饲养过程中,新蜂王出世后就要人工替它分群,否则会有一个蜂王带领一批工蜂离开蜂巢飞走而损失蜂群。养蜂者用人为办法生产蜂王浆,实际上就是用人工制做一些王台,放入蜂箱内,供蜂王产卵,待小幼虫孵出,工蜂们用蜂王浆饲喂时,养蜂人即将蜂王浆取出。

濒危现状

中蜂有7000万年进化史,在我国,中蜂抗寒抗敌害能力远远超过西方蜂种,一些冬季开花的植物如无中蜂授粉,必然影响生存,我国许多植物繁衍下来,中蜂功不可没。中蜂为苹果授粉率比西蜂高30%,且耐低温、出勤早、善于搜集零星蜜源,对保护我国生态环境意义重大。而洋蜂的嗅觉与我国很多树种不相配,因此不能给这些植物授粉,这将导致这些植物种类减少甚至灭绝,最终破坏生态环境。因此,拯救、保护中华蜜蜂已刻不容缓。

近年来,由于毁林造田、滥施农药、环境污染等因素,造成中蜂生存危机。除此而外,科研人员指出目前引入的意大利等国的洋蜂,是对中蜂最大的威胁。这些洋蜂对中华蜜蜂有很强的攻击力,且翅膀振动频率与中华雄蜂相似,导致中华蜜蜂误认,从而可以顺利进入蜂巢,还得到相当于同伴的待遇和饲喂。不同种群不能共存,洋蜂杀死中蜂蜂王不可避免。为此我国已在北京房山和黑龙江饶河建起相对封闭的中蜂、黑蜂保护区,并开始寻找野蜂,使中蜂不致灭绝。

近年,北京本土野生中华蜜蜂已经灭绝,而人工养殖的国内中华蜜蜂蜂王也开始由于不明原因死去,造成了中华蜜蜂(也称中蜂)种群的减少。中华蜜蜂起着重要的平衡生态作用,特别有利于高寒山区的植物,华北地区的很多树种都是早春或是晚秋开花的,还有的是零零星星开花的,如果没有中蜂,植物的受粉就会受到影响,这也是其它蜂种所不具备的特性。

一只优良的中蜂蜂王在产卵期每昼夜可产卵1500粒左右,它的平均寿命为3~5年,最长的可达8~9年。可是近些年蜂王的寿命越来越短了,有的竟活不到一个夏季。

然而20世纪末,中华蜜蜂在北方地区,黄河以北逐步减少了,长白山也只剩下几百群了。据了解,中华蜜蜂的减少,主要是蜂王由于不明原因死亡而造成的。

仅北京地区中华蜜蜂的数量就从上个世纪五十年代的4万多群,减少到了本世纪初的不足40群,已经到了濒危的程度。

可怕的是,中华蜜蜂一旦完全灭绝,会影响整个与之有关的植物共生生态系统的变化。近日,中国科学院有关人士为我们解开了蜂王之死的谜团,并且我国北方还建立了惟一的中华蜜蜂保护区。

中蜂节省饲料,这一可贵的优良特性能为人类提供更多的产品—蜂蜜。自然界中的各种动物都有其特有的越冬方式,蜜蜂是半蛰居营群体生活的昆虫。中蜂结团紧密,越冬期内往往叩掉巢脾下部大片巢房,结团在蜂巢下面的局部范围,蜂团集中而紧密。消耗少量饲料,少量运动产生微热,保持低限的生命活动,保持群体所需要的生存温度,这也是中蜂在长期的生存斗争过程中形成的有利于种族生命延续的生活习性。

蜜蜂的勤劳是最受人们赞赏的。有人作过计算,一只蜜蜂要酿造1公斤的蜜,就得去100万朵花上采集原料。如果花丛离蜂房的平均距离是15公里,那么,每采1公斤蜜,蜜蜂就得飞上45万公里,几乎等于绕地球赤道飞行了11圈。

其实,蜜蜂不仅勤劳,也极有智慧。它们在建造蜂房时显示出惊人的数学才华,连人间的许多建筑师也感到惭愧呢!

著名生物学家达尔文甚至说:“如果一个人看到蜂房而不倍加赞扬,那他一定是个糊涂虫。”

蜂房是蜜蜂盛装蜂蜜的库房。它由许许多多个正六棱柱状的蜂巢组成,蜂巢一个挨着一个,紧密地排列着,中间没有一点空隙。早在2200多年前,一位叫巴普士的古希腊数学家,就对蜂房精巧奇妙的结构作了细致的观察与研究。

巴普士在他的著作《数学汇编》中写道:蜂房里到处是等边等角的正多边形图案,非常匀称规则。在数学上,如果用正多边形去铺满整个平面,这样的正多边形只可能有3种,即正三角形、正方形、正六边形。蜜蜂凭着它本能的智慧,选择了角数最多的正六边形。这样,它们就可以用同样多的原材料,使蜂房具有最大的容积,从而贮藏更多的蜂蜜。

也就是说,蜂房不仅精巧奇妙,而且十分符合需要,是一种最经济的结构。

历史上,蜜蜂的智慧引起了众多科学家的注意。著名天文学家开普勒曾经指出:这种充满空间的对称蜂房的角,应该和菱形12面体的角一样。法国天文学家马拉尔弟则亲自动手测量了许多蜂房,他发现:每个正六边形蜂巢的底,都是由3个全等的菱形拼成的,而且,每个菱形的钝角都等于109°28′,锐角应该是70°32′。

18世纪初,法国自然哲学家列奥缪拉猜测:用这样的角度建造起来的蜂房,一定是相同容积中最省材料的。为了证实这个猜测,他请教了巴黎科学院院士、瑞士数学家克尼格。

这样的问题在数学上叫极值问题。克尼格用高等数学的方法作了大量计算,最后得出结论说,建造相同容积中最省材料的蜂房,每个菱形的钝角应该是109°26′,锐角都等于70°34′。

这个结论与蜂房的实际数值仅2′之差。

圆周有360°,而每1°又有60′。2′的误差是很小的。人们宽宏大量地想:小蜜蜂能够做到这一步已经很不错了,至于2′的小小误差嘛,完全可以谅解。

可是事情并没有完结。1743年,著名数学家马克劳林重新研究了蜂房的形状,得出一个令人震惊的结论:要建造最经济的蜂房,每个菱形的钝角应该是109°28′16″,锐角应该是70°31′44″。

这个结论与蜂房的实际数值吻合。原来,不是蜜蜂错了,而是数学家克尼格算错了!

数学家怎么会算错了呢?后来发现,当年克尼格计算用的对数表印错了。

小小的蜜蜂可真不简单,数学家到18世纪中叶才能计算出来、予以证实的问题,它在人类有史之前已经应用到蜂房上去了。

关于蜜蜂的造脾工程是用什么来衡量,导致巢房大小一样又整齐的问题,其实这是一个人类比较感兴趣的问题,不管是蜜蜂研究人员还是数学研究人员都对其进行了大量研究,但是从目前的研究来看,虽然说揭开了一些秘密,但是也带着很多不确定性,还有这大量的秘密甚至没有解开。就蜜蜂筑巢这个过程来说,目前的研究也还处于一个比较浅显的阶段。

关于巢脾的平行结构和垂直结构的研究

就目前来说,关于蜂巢的平行结构和垂直结构的研究,目前的研究成果认为与蜜蜂的触角有关。蜜蜂的触角上有很多板状的感受器,这些感受器相互连接的地方有很多感觉毛,当蜜蜂受到地球引力的作用时,蜜蜂的某一部位会受到改变,被引力作用的不会就会像杠杆一样移动,引发这些感受器兴奋。蜜蜂是在黑暗的环境中筑巢的,所以视觉器官是没有用的,主要就是通过引力来决定方位。

据有关资料介绍,蜜蜂的重力感受器位于蜜蜂的腿部关节连接处,头与胸之间,胸与腹之间,蜜蜂正式利用这些感受器的信息来保证在黑暗的蜂巢中巢脾的垂直排列。

蜂房大小的控制

蜜蜂借助地球引力的感受来保持巢房的建筑垂直,而且保证了这种垂直整体上从顶部偏向与底部,而巢房的大小则以一只蜜蜂所占巢房空间的大小来决定,所以蜜蜂在巢脾上从一段跑到另一端可以非常轻松的经过一个又一个的巢房,而巢房的这种最小距离就被严格的确定下来。

不能解释的真相

关于蜜蜂巢房结构,其实很多研究资料证实与蜜蜂的触角有关,但是一个巢房之间的平行结构,蜜蜂究竟是使用了什么感受器来实现的,至今仍是一个谜,但是可以确定这种感受器能够受到地球的磁场影响。

蜂路的确定

至于蜂路的确定,其实这点在我们养蜂的过程中已经得到体现,也就是我们在调控蜂路的时候使用的最小距离,比如中蜂的蜂路大约是8毫米。这个数据来源也是有依据的,尤其是野外的蜂群,其蜂路一般都在八到九毫米之间,这个数据的来源则是通过两只蜜蜂背对背工作来确定的,因为中蜂的厚度大约是4毫米,而两张巢脾上的蜜蜂要同时能够开展工作,假如以蜜蜂的厚度精确的是4毫米计算,那么两张巢脾上的两只蜜蜂背对背工作要能开展,这个蜂路就不能小于8毫米。所以蜂路的确定主要是通过蜜蜂背对背的工作来进行确定的。

正六边形的结构有什么秘密?

关于蜂巢的正六边形结构也是蜜蜂爱好者最为好奇的事情,但是很遗憾,根据目前的研究,在蜜蜂巢房的正六边形构造上,其实蜜蜂对于这种正六边形的贡献是非常少的,仅仅是由蜜蜂的身形结构来涉及出来的,并不存在我们想象的有多大的科学含量。

以上就是关于蜜蜂的一系列问题全部的内容,包括:蜜蜂的一系列问题、蜂房的结构有什么特点、为什么蜜蜂在不同地方建造的蜂房是一样的等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/zz/9772659.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-01
下一篇 2023-05-01

发表评论

登录后才能评论

评论列表(0条)

保存