阿里巴巴达摩院发布2021年十大科技趋势

阿里巴巴达摩院发布2021年十大科技趋势,第1张

达摩院(DAMO Academy)是阿里巴巴于2017年10月11日宣布成立的全球研究院。 达摩院是一家致力于 探索 科技 未知,以人类愿景为驱动力的研究院,是阿里在全球多点设立的科研机构,立足基础科学、颠覆性技术和应用技术的研究。

一:以氮化镓、碳化硅为代表的第三代半导体,迎来应用大爆发。

第三代半导体氮化镓、碳化硅经,主要用于工业充电、5G高频器件、可再生能源和储能领域的电源。随着新能源产业的逐步爆发,第三代半导体也会迎来爆发式增长。

二:后“量子霸权”时代,量子纠错和实用优势成为核心命题。

中国科学家构建世界首台光量子计算机“九章”,开启量子计算新时代。这是继去年谷歌发布其量子计算机后,该领域的一大突破。

达摩院量子实验室完成第一个可控量子比特研发工作,实现从0到1「量子芯片」的制备突破。让量子芯片拥有实在的物理载体。达摩院量子实验室将聚焦高精度量子比特的研发工作,这是通往通用量子计算机的关键一步

三:碳基技术突破,加速柔性电子发展。

碳基材料,包括零维的富勒烯、一维的碳纳米管、二维的石墨烯、三维的石墨及金刚石等,其中,碳纳米管和石墨烯凭借优异的电性能、透光性和延展性,被认为是柔性电子的“天选”材料。部分厂家已声明开发出柔性屏幕,相信不久柔性屏将成为手机的下一个爆发口。

四:AI提升药物及疫苗研发效率。

AI(Artificial Intelligence)就是人工智能,它是研究人的智能的,并且进行模拟和延伸的新兴科学技术。AI技术的研究领域包括机器人、语言识别、图像识别、自然语言处理和专家系统等。AI的目的就是希望让计算机能像人类一样进行学习和思考。AI与疫苗、药物临床研究进行结合,可以减少重复劳动与时间消耗,提升研发效率,极大地推动医疗服务和药物的普惠化。

五:脑机接口,帮助人类超越生物学极限。

今年马斯克的脑机接口公司Neuralink展示了一头植入Neuralink设备的猪,名为Gertrude。它在两个月前被植入Neuralink设备,目前状态良好。这一事件将脑机接口推上了风口,脑机接口虽然离实用化还有很远,但作为新一代人机交互和人机混合智能的关键核心技术,脑机接口对神经工程的发展起到了重要的制程推动作用。

六:数据处理实现“自治与自我进化”。

目前已经进入大数据时代,越来越多的人加入大数据分析这个行业,对大数据进行分析,通过分析获取很多智能的,深入的,有价值的信息。大数据的属性,数量,速度,多样性等呈现出不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要。以智能化方法,实现数据管理系统自动优化,是未来数据处理发展的必然选择。人工智能和机器学习手段,正逐渐被广泛应用于智能化的冷热数据分层、异常检测、智能建模、资源调动、参数调优、压测生成、索引推荐等领域。实现数据处理的“自治与自我进化”,将有效降低数据计算、处理、存储、运维的管理成本。

七:云原生重塑IT技术体系。

云计算已经进入下半场,如何把云计算与不同的业务场景深度结合?如何让技术真正作用于企业?如何节省企业IT部署成本?

突破传统IT的开发环境,云原生架构充分利用云计算的分布式、可扩展和灵活的特性,更高效地应用和管理异构硬件和环境下的各类云计算资源。阿里巴巴已成立专门的云原生部门来研究和发展这项技术。

八:农业迈入数据智能时代。

以物联网、人工智能、云计算等为代表的数字技术,正与农业产业深度融合,打通农业产业的全链路流程。农业将告别“靠天”吃饭,进入智慧农业时代。

九:工业互联网,从单点智能走向全局智能。

目前的工业智能仍以解决碎片化需求为主, 汽车 、消费电子、品牌服饰、钢铁、水泥、化工等具备良好信息化基础的制造业,工业互联网将贯穿供应链、生产、资产、物流、销售等各环节,实现企业生产决策闭环的全局智能化应用。


十:智慧运营中心成为未来城市标配。

城市化进程的加快,使城市被赋予了前所未有的经济、政治和技术的权利,城市被无可避免地推到了世界舞台的中心,发挥着主导作用。与此同时,城市也面临着环境污染、交通堵塞、能源紧缺、住房不足、失业、疾病等方面的挑战。在新环境下,如何解决城市发展所带来的诸多问题,实现可持续发展成为城市规划建设的重要命题。在此背景下,“智慧城市”成为解决城市问题的一条可行道路,智慧城市是指利用各种信息技术或创新概念,将城市的系统和服务打通、集成,以提升资源运用的效率,优化城市管理和服务,以及改善市民生活质量。 其利用信息和通信技术手段感测、分析、整合城市运行核心系统的关键信息,对民生等需求做出智能的响应,为人类创造更美好的城市生活。智慧城市建设的大提速将带动地方经济的快速发展,也将带动卫星导航、物联网、智能交通、智能电网、云计算、软件服务等多行业的快速发展,为相关行业带来新的发展契机。我国智慧城市发展进入规模推广阶段,国家鼓励开展应用模式创新,推进智慧城市建设。

随着各地智慧城市的建设与推进,智慧城市的数据管理分析等成为一大难题,智慧运营中心将统一城市系统、并提供整体智慧治理能力,进而成为未来城市的数字基础设施。

和概念来源于网络

子号应该可以算作通讯卫星当中的一种。只是,和传统的通讯卫星直接传递信息不同, 墨子号的工作不是传递信息本身,而是分配“密钥”——解码加密信息的“钥匙”。
这把密钥的加密性能,比历史上人类使用过的所有密码本、阿兰·图灵造计算机想要破译的 Enigma 密码、Touch-ID, “两步验证”甚至 PGP 系统还要高,可以说不在一个级别上。
以往的密码/密钥,要么是固定的,要么非固定但按照一定的逻辑变化,从而有迹可循,让人们可以使用计算机技术或通过社会工程学来破译。量子密码的安全型提到了前所未有的新高度,几乎无法破解。
它利用了量子科学无比浪漫的基本原理:
两颗纠缠的光子被拆散之后,无论相距多远总会心灵感应,一个形态发生变化,另一个会像镜子一样同步变化。
光子组成了密钥,墨子号就是向地面发射光子的卫星——一颗量子密钥分发卫星。
举个例子,打仗,A 地长官向 B 地前线部队发送军令。墨子号可以将许多组每组两颗纠缠态光子拆开,发射给 A 和 B 两地。当 A 地“观测”这些光子,就像用手去触摸了它们一样,会让这些光子发生形态变化。同时,发射到 B 地的光子也会产生一模一样变化。把这些光子的形态,按照固定顺序记录下来,就变成了一组密钥。A 地按照这个密钥加密发送的信息,B 地手里已经拿到了解码的密钥,能够顺利解密信息。
怎么保证信息不被第三方破译呢?需要用到量子科学的两条基本特性:“量子态不可克隆”原理,和“海格堡测不准”原理。
不可克隆:世界上就算有长相一模一样的人,也绝对没有第三颗一模一样的光子。只有 A 和 B 知晓目标光子的状态,世界上也没有能够完美克隆目标光子状态的机器。不完美克隆是可以的——然而并没有什么用,因为复原出来的密钥早已千差万别。
测不准:A 摸了光子,改变了光子的状态并记录下来。谁要是再摸,有很大可能状态又变了。理论上,如果第三方想要截取密钥,必须先截获光子,再去观测它,结果光子就变化了。结果 B 要么没收到光子,要么收到光子摸完去跟 A 校验,发现怎么不一样啊,就明白了,咱们被人监听了。这其实没关系,两边一对发现密钥失守,这条军令大不了咱们不发了,请墨子号给咱们再发一个新密钥吧,确认没问题再传递信息。
就算有人能一直截获光子,充其量也是掌握了保险箱的钥匙而已——箱子里可以什么东西都没有嘛。
上面是对太空量子加密通讯的一个非常粗浅的解释,在专业人士看来不一定完全准确,但应该足够让你明白墨子号是干什么,怎么干的。
但这一切仍是个理论可行,还未在真实世界里验证过的尖端设想。
墨子号的意义
陆地上的量子通讯,倒是已经得到了验证。
包括中国和美国在内的一些国家,早就建立了陆基的量子通讯线路,也就是发射、传输和接收全都在陆地上,通过光纤传输。在中国,“京沪保密线”(北京-济南-合肥-上海量子通讯干线)已经落成,使用了中国量子科学泰斗人物,中科大潘建伟教授研发的中继器,能够顺利将光子传送数百公里的距离。
然而,光纤并非一种良好的光子传播介质。实验室里最好的光纤能承载带宽高达数十 Tbps 的光信号,也能让你在中国的家里用 4k 清晰度观看几秒前里约奥运赛场上的画面,却无法在量子通讯的范畴里完好无损地传播一个光子。效果已经买过了量子加密最低的门槛,但还不够好——你可以理解为,就算导电性能最好的导体也会自带电阻。
事实上,光纤不完美,地面空气也不完美。这让不完美不成活的量子科学家们很是苦恼:视野必须转向太空!
奥地利量子科学家,维也纳大学教授安东·蔡林格(Anton Zeilinger),在量子科学领域比潘建伟教授资历更高,也是潘的导师。他早在 2001 年跟欧洲航天局(ESA)提出要搞量子卫星,遗憾的是经费一直批下不来。
后来中国方面提出并确定了量子卫星计划,蔡林格博士现在同潘建伟教授一起在“墨子号”项目组工作。
最近 ESA 转过神来,决定把自己不输给中国的技术利用起来,也搞一颗量子卫星发到太空里。知乎用户“宋祁朋”介绍,在前面提到的量子通讯具体实现技术上,中欧(主要是法国)之间是两种不同技术并行发展。很难说谁更厉害,但合作起来肯定是棒棒的。
墨子号是科学家的第一次机会,能够去验证前面说的那一大段复杂而又酷炫的技术,究竟只是说说,还是真的能用。更别提卫星发上去了,机器能不能正常运转仍有待“观测”——当然,科学家负责最坏的打算,我们负责最好的期待。
展开剩余91!


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/10392078.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-08
下一篇 2023-05-08

发表评论

登录后才能评论

评论列表(0条)

保存