基于PLC的物业供水系统设计

基于PLC的物业供水系统设计,第1张

以下方案,仅供参考
WHG系列变频调速恒压供水设备
我公司采用日本三垦公司最新一代IPF系列变频调速器、
并配以恒压供水控制基板IWS,开发生产出“WHG系列变频恒压供水设备”。该设备无需附加多余的控制器件(如PLC可编程序控制器、
PID调节器及其它的专用控制器等),提高了系统的可靠性。
该系统可根据管网瞬间压力变化,
自动调节某台水泵的转速和多台水泵的投入和退出,使管网主干管出口端保持在恒定的设定压力值,并满足用户的用水要求,
使整个系统始终保持高效节能的最佳状态。
该设备可取代传统的水塔、高位水箱或气压罐等供水方式,节能效果显著,
是国家重点推广的节能新技术产品。
一、主要性能和特点
1、自动化程度高,可实现恒压变量、生活供水/消防供水双恒压等控制方式,多种启、停控制方式。
2、节电率30%--50%(配以节能运转模式,还可进一步提高节能效果)。
3、变频器可对电机进行软启软停,减少设备损耗,延长电机寿命。
4、管网压力恒定,,压力误差≤±1%,无冲击。
5、功能齐全,运行可靠, *** 作维护简便。
6、具有手动、自动 *** 作功能。
7、智能化控制,可任意修改参数指令(如压力设定值、控制顺序、
控制电机数量、压力上下限、PID值、加减速时间等)。
8、设备具有完善的电气安全保护功能,对过流、过压、
欠压、过载、断水等故障均能自动保护,特别是输入缺相、输出缺相保护功能,彻底解决了电机缺相运行烧毁电机的问题,提高了电机的使用寿命。
9、可根据用户的需要,选择各种附加功能,如电机定时切换、
添加附属小泵,自动定时开机、关机等。
二、工作原理
在设备运行中,由于用水量的变化,使供水压力发生变化,通过压力传感器将压力变化信号传送给运行控制器,经控制器电脑与设定压力比较判断后,
调整变速泵转速或水泵运行台数,调整供水流量使供水压力重新回到设定的压力值,满足用水要求。
若用水量很小时,经控制器电脑分析确认后自动停止主供水系统运行,启动夜间值班小泵,以维持管网压力和少量用水,当用水量达到值班小泵不能维持设定的压力时,主供水系统自动启动,值班小泵停止运行,从而提高了系统运行的安全性,并获得了明显的节电效果。
三、适用范围
1、城镇居民生活区供水可供50~10000户单楼或楼群。
2、高层建筑、饭店宾馆及各类其它建筑的室内供水。
3、各类自来水厂的加压系统。
4、农村居民自来水泵站。
5、各类锅炉给水系统。
6、消防供水系统。
四、
产品及选型介绍
1
、单泵恒压变量供水控制系统—WHG-□□□-(空)
(1)该系统是为各企事业单位自备井设计制造的供水系统,
可利用原有旧泵进行改造,对原有供水管网不做任何改动,工程量小,见效快,节约资金。
系统从安装在总管出口处的远传压力表采集管网压力,
依据该反馈信号作出判断,并对水泵进行变频调速,调节水泵的出水量,满足用户的用水需求,并达到节能目的。
(2)该系统还可以做成一用一备的控制方式;
如当第一台泵出现故障时手动转换到另外一台泵工作,或做成第一台水泵工作一段时间后,系统自动切换到另外一台泵工作的定时切换方式。
(3)此系统具有自动控制回路、手动控制旁路及各相应的运行指示状态,并且具备各种完善的保护功能,如缺相报警、过载报警、变频器故障报警等功能。
(4>)对于控制深井泵或潜水泵的单泵恒压变频调速控制系统,因潜水泵泵的额定电流比同功率变频器的额定电流大,输出转矩也比较高,因此在选用时应选比水泵额定功率大一级的控制系统。
2
、多泵恒压供水固定方式控制系统—WHG-□□□-P
该系统由两台以上主泵(及一台附属小泵)组成,其中一台变频运行,
其余工频运行。
该系统可根据压力变化,一台固定的水泵变速运行,
其余水泵以工频方式自动投入,实现水压恒定。系统具有自动与手动双控制回路。
系统功能可根据用户需要,选择如下:
(1)
启动方式(先启先停、后启先停);
(2)
液位控制,可依据蓄水池的水位高低情况控制系统的启停状态;
(3)
辅助小泵功能,在夜间用水量较小时,关掉变频泵,通过辅助小泵维持管网一定压力,可使节能效果更显著。
3、多泵恒压供水循环软启动方式控制系统--WHG-□□□-X
该系统为一台变频器依次控制每台水泵实现软启动及转速的调节,实现恒压。
该系统控制原理不同于前两种系统之处为,变量泵达到水泵额定转速后,如水压在所设定的判断时间内还不能满足设定恒压值时,系统自动将当前变量泵状态切换为工频状态,并指示下一台泵为变量泵,运行过程同前。
除启动方式只可为先启先停外,固定方式系统的选择功能同样适用于该系统。
4
、消防加压变频调速供水控制系统——
WXG-
□□□
消防供水控制系统除具备可接受远程火灾信号远程 *** 作和远程报警功能外,规格同
WHG
系列,可按
WHG
系列样本选型。
五、选型建议
目前我公司生产的WHG系列恒压供水控
制设备,固定和循环两种方式控制精度和节能效果均相同,切换过程中对管网压力的扰动同样很小。不同点为:固定方式设备投资少,
运行维护简单,故障点少,但工频泵切换时对泵的机械磨损较大,各泵的使用寿命不均;而循环方式则可减少泵切换时的机械磨损,
使各泵的使用寿命均匀,不足之处是设备投资相对较高,因该方式泵切换时可能出现电流冲击,日久容易造成接触器接触点粘连现象,
所以对接触器质量要求较高,如选择不当,有可能会损伤变频器。
我们建议,对于控制功率较小的系统两种方式均可选用,而控制功率较大的系统以固定方式为好。
六、型号规格说明

WHG-37M3-PF
为例说明如下:
WHG---设备型号(微机控制恒压供水设备)
37---控制水泵电机额定功率(KW)
M---工频泵普通方式启动(C---Y-三降压启动方式,J---自耦降压启动方式)
3---控制主水泵数量(1-7)
P---固定工作方式(X---循环工方式,空---一台变频)
F---有辅助小泵(空--无辅助小泵)
七、设备节能分析
根据理论分析,当电源电压一定时,电机消耗的功率与其转速
的立方成正比,即
N1
/
N2
=(
n1
/
n2)^3
其中
N1

N2
是电机消耗的功率,
n1

n2
是相应于
N1

N2
的转速。当水泵的扬程一定时,其出水量与转速成正比,即:
Q1
/
Q2
=
n1
/
n2
其中,
Q1

Q2
表示相应于
n1

n2
的水泵的出水量。因此在维持水泵压力恒定的条件下,通过调整水泵机组的转速从而调整水泵的出水量,就可以大大节约电机所消耗的功率而达到节能的目的。据统计大多数水泵实际平均供水量只是额定值的
70%
~
80%
,当供水量分别为额定值的
100%

90%

80%

70%
时,水泵的转速和功率与额定值之比将如下表所示:
Q
/
Q0
n
/
n0
N
/
N0
100%
100%
100%
90%
90%
729%
80%
80%
512%
70%
70%
343%
一般的说,变频调速恒压供水方式用于生活供水,节电效率很高,可达
50%
,用于工业供水则在
30%

40%
之间。对于郊区或农村用水量变化大的用户,变频调速恒压供水方式
更加优越。

深水井用深井泵。

深井泵特点

1、电机、水泵一体,潜入水中运行,安全可靠。

2、对井管、扬水管无特殊要求(即:钢管井、灰管井、土井等均可使用:在压力许可下,钢管、胶管、塑料管等均可作扬水管使用)。

3、安装、使用、维护方便简单,占地面积小,不需要建筑泵房。

4、结果简单,节省原材料。潜水电泵使用的条件是否合适,管理得当与使用寿命有直接的关系。

扩展资料

深井泵是电机与水泵直联潜入水中工作的提水机具,它适用于从深井提取地下水,也可用于河流、水库、水渠等提水工程。

主要用于农田灌溉及高原山区的人畜用水,亦可供城市、工厂、铁路、矿山、工地供排水使用。由于深井泵是电机及水泵体直接潜入水中运行的,其是否安全可靠将直接影响到深井泵的使用以及工作效率,因此,安全可靠性能高的深井泵也成为首选。

在地下水源热泵空调系统中,经常一台深井泵的供水量能满足两台或更多热泵机组所需的水量。但是在实际运行中发现,热泵机组大部分时间都在部分负荷运行,而深井泵一直处于满负荷运行,结果造成了电费及水费的大量增加。

变频调速技术以其显著的节能效果和可靠的控制方式在空调系统中水泵和风机应用较多,并且其技术也比较成熟,但在地下水源热泵空调系统中深井泵供水应用,还很少见,但是却相当有必要。

对沈阳地区的地下水源热泵应用试点调查发现,在地下水源热泵空调系统中,当热泵容量不大一台深井泵的供水量能满足两台或更多热泵机组所需的水量。

在实际运行中发现,热泵机组大部分时间部分负荷运行,而深井泵一直在满负荷状态运行,结果造成了电费及水费的大量增加。因此深井泵变频调速供水技术在地下水源热泵系统中的应用具有很大的节能潜力。

深井泵采用温差控制法,由于热泵机组在制热工况下,必须保证蒸发器出水温度不能过低,所以在深井泵回水管道上设温度传感器,设定温度为tjh。

井水源侧回水温度大于tjh值时,深井泵控制器向变频器发出降低电流频率信号,变频器将输入电源的频率降低,深井泵的转数相应降低,水泵供水量、轴功率和电动机输入功率也随之降低,从而达到了节能的目的。当水源侧回水温度低于tjh值时,增频调节。

参考资料来源:百度百科-深井泵

本文针对湖南某宾馆采用的地下水源热泵中央空调系统的运行现状,根据其自身特点提出对该系统空调水泵进行变频控制节能改造的建议和方案,并采用当量峰值小时数法从节能性和静态回收期两方面详细论证了该改造方案的可行性。结果证明,该改造方案在保证不低于热泵机组对水量的最低要求的同时,根据负荷的变化自动调节水泵的流量,节能效果显著,静态回收期短,是切实可行的。
关键字:地下水源热泵 变频控制 节约能源1 引言
集中式中央空调系统在为人们营造舒适环境的同时也带来了能耗问题,如何既满足空调舒适度,又最大限度的节约能源,已日益为人们所关注。目前空调系统设计和水泵等设备选型均是按最不利工况进行的,且留有一定的裕量。由于季节、昼夜和用户负荷的变化,实际空调热负载在绝大部分时间内远比设计负载低,空调系统多数时间是在部分负荷下运行。而运行情况是空调水泵一年四季长期在额定工况下工作,只能通过节流来降低水流量满足负荷的要求,使得水泵大部分功耗消耗在克服节流阀阻力上,浪费了水泵运行的输送能量。一般空调水泵的耗电量约占总空调系统耗电量的20-30%,故节约低负载时水系统的输送能量,对降低整个空调系统能耗具有重要的意义。
本文针对湖南某宾馆采用的地下水源热泵系统,根据其运行现状提出对该系统的空调水泵进行闭环自动变频控制节能改造,从节能性和静态回收期等方面论证了该改造方案是切实可行的。
2 空调系统概况
该宾馆位于长江中下游地区的湖南省西北部的澧县,作者于2003年1月至3月对该宾馆地源热泵系统的冬季运行工况进行了测试,测试结果整理如表1。由于宾馆的入住率、室外气温变化、人员活动内容等原因,该系统基本上是在设计负荷80%及以下运行,其中运行于设计负荷的60%以下的就占有6348%。显然根据满负荷状态选取的热泵机组、水泵等设备让其在部分负荷下长期连续运行,设备大部分时间处于低效率工作状态。该系统热泵机组一大一小并联运行,制热量分别为100KW、40KW;两台的并联热水循环泵型号相同,其铭牌额定功率均为22KW;深井泵铭牌额定功率为75KW(系统图如图1所示),且所有水泵均定流量运行,始终处于工频状态下运转。当机组处于部分负荷运行时,常常通过关小管路上的阀门来调节供水量,造成了极大的能源浪费,因此我们有必要对该空调系统进行一下改进。3 改造方案的提出
热泵主机、深井泵和热水循环泵是宾馆中央空调系统的主要组成部分,耗电量大。由图2可以看出,在该空调系统中,热泵机组的功耗占整个空调系统能耗的65%,深井泵和热水循环泵分别为24%和11%,因此要节省整个空调系统的能耗,除大力减少热泵机组的能耗以外,减少空调水泵的能耗也是一个重要方面。
该系统的地源热泵机组本身即具有能量自动调节功能,可以在不改变制热工况的前提下,改变压缩机的输气量进而改变供液量来调节冷凝器的产热量。同时,这又为水系统的变流量运行提供了基本条件。
对于空调水泵而言,由于水泵处于定流量运行,在部分负荷状态下常常只能通过调节管路上的水阀开度来改变水流量;同时因电机转速不可调,电机只能工作在开和停两种状态,即使当热负荷很小时,也必须至少开一台,电机轴上的输出功率远大于实际负荷的需要,从而造成不必要的能源浪费。根据水泵的相似律,水泵的流量、扬程、功率具有如下关系:
(1)
式中Q, H, N, n分别为水泵的流量、扬程、轴功率和转速。
从式(1)可以看出水泵的扬程与水泵流量的平方成正比,轴功率与流量的立方成正比,而流量又与转速成正比。由此可见当电机的转速稍有下降,电机的耗电量就会大幅度下降,节能效果显著。水泵的变频调速装置就是通过调节水泵的转速以使水泵流量随负荷变化而变化,达到节能目的。
4 水泵变频调速工作原理及其控制方案
41 水泵变频调速原理
水泵功率、流速、流量、扬程之间具有式(1)所示关系,又由于交流异步电动机的转速与电源频率之间的关系为:
(2)
式中n,f,S,P分别为电机的转速,供电电源频率,转差率,电机极对数。
由式(2)可知,当转差率变化不大时转速正比于电源频率,只要能平滑调节电源频率,就能平滑调节电机转速。1水泵变频调速就是通过改变电源频率来调节水泵转速的一种方法。采用变频技术结合合理的自控方案,对水泵进行变流量调节,不仅避免了采用阀门调节造成的浪费,而且还极大的提高控制和调节精度。同时采用变频调速对电机实现软启动,无冲击杂声,还可以延长电机的使用寿命。
42 深井泵变频调速控制方案
对于深井泵来说,由于深井水温度常年保持不变,维持在185℃左右,我们以深井水回水温度为控制参数即可控制井水的进出口温差。如图3所示,现采用温度传感器、变频器、PID回路调节器组成闭环控制系统,按照5~7℃的温差指标,深井水回水温度控制在T℃(例如冬季12℃,夏季25℃),使深井水泵的转速相应于热负载的变化而变化。以冬季为例,当负荷增加时,深井水回水温度降低,温度传感器将温度信号(4~20mA)反馈至PID回路调节器中,PID调节器根据温度设定值和温度反馈值的偏差进行PID运算,然后输入给变频器一个提高电机运转频率的信号,加大水泵转速和流量,直到温度与设定值一致;反之负荷降低时,减小频率,降低水泵转速和流量。当水泵运行频率降到控制仪表设定的低限值时,变频器停止频率的继续降低,以满足主机对流量的要求,对主机起到保护作用。
43 热水循环泵变频调速控制方案
由于该热水循环系统由两台型号相同的水泵并联运行,为了实现两台水泵电机转速连续可调,使得水泵电机转速根据实际热负载的大小而设定,进而节约能源;同时也为了节省变频器等设备的初投资,作者拟采用一定一变形式,即只有一台水泵配备变频器作调速运行,另一台仍为定速运行。控制系统主要由内置PID的变频器、PLC可编程控制器、压差变送器、主接触器等构成,如图4所示,变频器和PLC控制器作为系统控制的核心部件,以末端最不利环路压差为反馈信号,时刻跟踪着该信号与设定值(可取01Mpa)的偏差变化情况,经过变频器内置的PID调节器运算,利用PLC控制器实现水泵变频与工频的切换,自动控制水泵投入台数和电机的转速,实现闭环控制,自动调整恒压差变量供水。
当系统负荷较小时,只需一台电机工作在低于工频状态下即可满足要求时,PLC利用变频器软启动一台水泵,根据压差变送器反馈来的信号(0~10V)自动调节运行频率。当热负荷增大时,变频器输出频率接近工频而管网压差仍达不到设定值,为了保证系统不频繁切换水泵,延时一段时间,若压差仍低于设定值时,则PLC将当前工作的变频泵切换至工频50HZ状态下运行,关断变频器,再由变频器从0HZ软启动下一台水泵,并根据偏差变化情况及时利用变频器调整到对应流量需要的频率,实现一台变频一台工频双泵供水。反之,当负荷降低时,变频器工作在基本频率时,如果出口流量仍然很大,供水压差高于设定值,同样延时一段时间后,若压差仍然很高,此时再由PLC关掉工频控制方式的水泵,只由剩下的单泵变频供水。无论系统是单泵变频运行还是双泵一定一变运行,均能实现末端恒压差供水。切换示意图如图5所示。
5 水泵变频节能计算
51 变频节能计算方法
本文参照文献4、5的算法,采用当量峰值小时数法计算空调运行期间的能耗,夏季当量小时数τ夏,冬季当量小时数τ冬,空调系统全年运行小时数t。设水泵的铭牌额定功率为N(KW),在未采用变频技术的情况下,空调水泵的全年耗电量Q1为:
Q1=N-t ,KWh (3)
而采用变频调速后全年用电量Q2为:
Q2=N-(τ夏+τ冬),KWh (4)
则全年可节省的电量为
ΔQ=Q1-Q2=N-t-N-(τ夏+τ冬),KWh (5)
静态投资回收期 n=,年 (6)
式中 M0 - 分别为采用变频技术增加的初投资,元
M1 - 每年节省的运行费用(主要是能源费用),元
湖南省商业用电电价为098元/度。宾馆全年以冬、夏两季6个月运行计算,每天平均运行18个小时(6:00-24:00),文献5的当量湿球温度小时数的数据公式是针对上海地区得出,由于湖南省和上海气候条件相差不大,因此本文也近似采用此公式
τ夏=309732-10216tns τ冬=56737+3643 tns (7)
tns- 室内设计湿球温度值 这里夏季取tns =203℃;冬季取tns =123℃。
代入式(7)得:τ夏=10234h,τ冬=10155h
52 深井泵节能效果分析
深井泵铭牌额定功率N=75KW,一台,拟选富士FRN75G11S-4CX变频器一台,市场报价6410元,加上其它外围设备共计总投资为M0=7000元。将其数据代入上式(5)、(6)中得:
ΔQ=Q1-Q2=7563018-75(10234+10155)=900825KWh
折合成人民币每年可节约电费M1=900825098=8828元,节能效果显著。
静态投资回收期n===079年,9个半月即可回收初投资。
53 热水循环泵节能效果分析
热水循环泵铭牌额定功率N=22KW,两台,拟选富士FRN22G11S-4CX变频器一台,市场报价3920元,三菱FX2N-16MR-001 PLC可编程控制器一台,市场报价3080元,加上其它外围设备共计总投资为M0′=8000元。将其数据代入上式(5)、(6)中得:
ΔQ′==22230618-222(10234+10155)=52844KWh
折合成人民币每年可节约电费M1′=52844098=5179元,节能效果显著。
静态投资回收期n′===15年,一年半即可回收初投资。
6 结论
综上所述,根据地下水源热泵中央空调系统的运行特点,提出采用变频控制装置对系统进行改造,在保证不低于热泵机组对水量的最低要求,自动调节水泵流量以满足负荷的变化,节能效果显著,静态回收期短,具有一定的可行性。
参考文献
(1) 龙有新 第十二届全国暖通空调技术信息网大会文集 北京:中国建材工业出版社 2003 185~189
(2) 韩焱青 武汉化工学院学报,2000,22(4):70~73
(3) 张戟 龚固丰计算机与自动化,1999,18(4):18~19
(4) 钱锋 郑中磊 建筑热能通风空调,2002,21(5):51~52
(5) 陈沛霖 岳孝方 空调与制冷技术手册 上海:同济大学出版社,1991
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:>这个思路是正确的。这套装置叫做衡压给水系统。不过还应该有一台气泵,衡压罐内还应该有水位计和压力计。水位计根据罐内水位高低来控制水泵补水;压力计根据系统压力来控制气泵加压;这样就可以保持连续衡压供水啦。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/12623476.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-26
下一篇 2023-05-26

发表评论

登录后才能评论

评论列表(0条)

保存