wifi芯片和WIFI模块有什么区别

wifi芯片和WIFI模块有什么区别,第1张

wifi芯片和WIFI模块区别为:组成不同、功耗不同、用途不同。

一、组成不同

1、wifi芯片:wifi芯片是嵌入式Wi-Fi模块,主控芯片一般为功能简单的32位单片机(MCU),内置Wi-Fi驱动和协议,接口为一般的MCU接口如UART等。

2、WIFI模块:WIFI模块集成了射频收发器、MAC地址、WIFI驱动、所有WIFI协议。

二、功耗不同

1、wifi芯片:wifi芯片在功耗上做了很大的改善,比较适合对功耗控制比较严格的无线家电设备。

2、WIFI模块:WIFI模块需要非常强大的电脑CPU来完成应用才能正常工作,功耗比较高。

三、用途不同

1、wifi芯片:wifi芯片适合于各类智能家居或智能硬件中,比如带WiFi功能的电视、空调、冰箱等。

2、WIFI模块:WIFI模块适合用在笔记本、平板电脑上的USB接口或者SDIO接口上。

2017年中国半导体封装测试技术与市场年会已经过去一个月了,但半导体这个需要厚积薄发的行业不需要蹭热点,一个月之后,年会上专家们的精彩发言依然余音绕梁。除了“封装测试”这个关键词,嘉宾们提的最多的一个关键词是“物联网”。因此,将年会上的嘉宾观点稍作整理,让我们再一起思考一下物联网时代的先进封装。
智能手机增速放缓

半导体下游市场的驱动力经历了几个阶段,首先是出货量为亿台量级的个人电脑,后来变成十亿台量级的手机终端和通讯产品,而从2010年开始,以智能手机为代表的智能移动终端掀起了移动互联网的高潮,成为最新的杀手级应用。回顾之前的二三十年,下游电子行业杀手级应用极大的拉动了半导体产业发展,不断激励半导体厂商扩充产能,提升性能,而随着半导体产量提升,半导体价格也很快下降,更便宜更高性能的半导体器件又反过来推动了电子产业加速发展,半导体行业和电子行业相互激励,形成了良好的正反馈。但在目前, 智能手机的渗透率已经很高,市场增长率开始减缓,下一个杀手级应用将会是什么?

物联网可能成为下一个杀手级应用

根据IHS的预测,物联网节点连接数在2025年将会达到700亿。

从数量上来看,物联网将十亿量级的手机终端产品远远抛在后面,很可能会成为下一波的杀手级应用。但物联网的问题是产品多样化,应用非常分散。我们面对的市场正从单一同质化大规模市场向小规模异质化市场发生变化。对于半导体这种依靠量的行业来说,芯片设计和流片前期投入巨大,没有量就不能产生规模效应,摊销到每块芯片的成本非常高。

除了应对小规模异质化的挑战, 物联网需要具备的关键要素还包括 :多样的传感器(各类传感器和Sensor Hub),分布式计算能力(云端计算和边缘计算),灵活的连接能力(5G,WIFI,NB-IOT,Lora, Bluetooth, NFC,M2M…),存储能力(存储器和数据中心)和网络安全。这些关键要素会刺激CPU/AP/GPU,SSD/Memory,生物识别芯片,无线通讯器件,传感器,存储器件和功率器件的发展。

物联网多样化的下游产品对封装提出更多要求

物联网产品的多样性意味着芯片制造将从单纯追求制程工艺的先进性,向既追求制程先进性,也最求产品线的宽度发展。物联网时代的芯片可能的趋势是:小封装,高性能,低功耗,低成本,异质整合(Stacking,Double Side, EMI Shielding, Antenna…)。

汽车电子的封装需求: 汽车电子目前的热点在于ADAS系统和无人驾驶AI深度学习。全球汽车2016年产销量约为8000万台,其中中国市场产销量2800万台,为汽车电子提供了足够大的舞台。ADAS汽车系统发展前景广阔,出于安全考虑,美国NHTSA要求从2018年5月起生产的汽车需要强制安装倒车影像显示系统。此外,车道偏离警示系统(LDW),前方碰撞预警系统(FCW),自动紧急刹车系统(AEBS),车距控制系统(ACC),夜视系统(NV)市场也在快速成长。中国一二线城市交规越来越严格也使得人们对ADAS等汽车电子系统的需求提升。ADAS,无人驾驶,人工智能,深度学习对数据处理实时性要求高,所以要求芯片能实现超高的计算性能,另外对芯片和模块小型化设计和散热也有要求,未来的汽车电子芯片可能需要用25D技术进行异构性的集成,比如将CPU,GPU,FPGA,DRAM集成封装在一起。

个人移动终端的封装需求: 个人消费电子市场也将继续稳定增长,个人消费电子设备主要的诉求是小型化,省电,高集成度,低成本和模块化。比如个人移动终端要求能实现多种功能的模块化,将应用处理器模块,基带模块,射频模块,指纹识别模块,通讯模块,电源管理模块等集成在一起。这些产品对芯片封装形式的要求同样是小型化,省电,高集成度,模块化,芯片封装形式主要是“Stack Die on Passive”,“Antenna in SiP”,“Double Side SiP等。比如苹果的3D SiP集成封装技术,从过去的ePOP & BD PoP,发展到目前的是HBW-PoP和FO-PoP,下一代的移动终端封装形式可能是FO-PoP加上FO-MCM,这种封装形式能够提供更加超薄的设计。

5G 网络芯片的封装需求: 5G网络和基于物联网的NB-IOT网络建设意味着网络芯片市场将会有不错的表现。与网络密切祥光的大数据,云计算和数据中心,对存储器芯片和FPGA GPU/CPU的需求量非常大。通信网络芯片的特点是大规模,高性能和低功耗,此外,知识产权(IP)核复杂、良率等都是厂商面临的重要问题。这些需求和问题也促使网络芯片封装从Bumping & FC发展到25D,FO-MCM和3D。而TSV技术的成功商用,使芯片的堆叠封装技术取得了实质性进展,海力士和三星已成功研发出3D堆叠封装的高带宽内存(HBM),Micron和Intel等也正在联合推动堆叠封装混合存储立方体(HMC)的研发。在芯片设计领域,BROADCOM、GLOBAL FOUNDRIES等公司也成功引入了TSV技术,目前已能为通信网络芯片提供25D堆叠后端设计服务。

上游晶圆代工厂供应端对封装的影响

一方面,下游市场需求非常旺盛,另外一方面,大基金带领下的资本对晶圆代工制造业持续大力投资,使得上游的制造一直在扩充产能据SEMI估计,全球将于2017年到2020年间投产62座半导体晶圆厂,其中26座在中国大陆,占全球总数的42%。目前晶圆厂依然以40

nm以上的成熟制程为主,占整体晶圆代工产值的60%。未来,汽车电子,消费电子和网络通信行业对芯片集成度、功能和性能的要求越来越高,主流的晶圆厂中芯和联电都在发展28nm制程,其中台积电28nm制程量产已经进入第五年,甚至已经跨入10Xnm制程。

随着晶圆技术节点不断逼近原子级别,摩尔定律可能将会失效。如何延续摩尔定律?可能不能仅仅从晶圆制造来考虑,还应该从芯片制造全流程的整个产业链出发考虑问题,需要 对芯片设计,晶片制造到封装测试都进行系统级的优化。 因此, 晶圆制造,芯片封测和系统集成三者之间的界限将会越来越模糊。 首先是芯片封测和系统集成之间出现越来越多的子系统,各种各样的系统级封装SiP需要将不同工艺和功能的芯片,利用3D等方式全部封装在一起,既缩小体积,又提高系统整合能力。Panel板级封装也将大规模降低封装成本,提高劳动生产效率。其次,芯片制造和芯片封测之间出现了扇入和扇出型晶圆级封装,FO-WLP封装具有超薄,高I/O脚数的特性,是继打线,倒装之后的第三代封装技术之一,最终芯片产品具有体积小,成本低,散热佳,电性能优良,可靠性高等优势。

先进封装的发展现状

先进封装形式在国内应用的越来越多,传统的TO和DIP封装类型市场份额已经低于20%,

最近几年,业界的先进封装技术包括以晶圆级封装(WLCSP)和载板级封装(PLP)为代表的21D,3D封装,Fan Out WLP,WLCSP,SIP以及TSV,

2013年以前,25D TSV封装技术主要应用于逻辑模块间集成,FPGA芯片等产品的封装,集成度较低。2014年,业界的3D TSV封装技术己有部分应用于内存芯片和高性能芯片封装中,比如大容量内存芯片堆叠。2015年,25D TSV技术开始应用于一些高端GPU/CPU,网络芯片,以及处理器(AP)+内存的集成芯片中。3D封装在集成度、性能、功耗,更小尺寸,设计自由度,开发时间等方面更具优势,同时设计自由度更高,开发时间更短,是各封装技术中最具发展前景的一种。在高端手机芯片,大规I/O芯片和高性能芯片中应用广泛,比如一个MCU加上一个SiP,将原来的尺寸缩小了80%。

目前国内领先封装测试企业的先进封装能力已经初步形成

长电科技王新潮董事长在2017半导体封装测试年会上,对于中国封测厂商目前的先进封装技术水平还提到三点:

SiP 系统级封装: 目前集成度和精度等级最高的SiP模组在长电科技已经实现大规模量产;华天科技的TSV+SiP指纹识别封装产品已经成功应用于华为系列手机。

WLP 晶圆级封装 :长电科技的Fan Out扇出型晶圆级封装累计发货超过15亿颗,其全资子公司长电先进已经成为全球最大的集成电路Fan-In WLCSP封装基地之一;晶方科技已经成为全球最大的影像传感器WLP晶圆级封装基地之一。

FC 倒装封装: 通过跨国并购,国内领先企业获得了国际先进的FC倒装封装技术,比如长电科技的用于智能手机处理器的FC-POP封装技术;通富微电的高脚数FC-BGA封装技术;国内三大封测厂也都基本掌握了16/14nm的FC倒装封装技术。

分别说下吧:
1、WiFi:WiFi技术是目前传输速度最快的的技术,产品成本较低,在目前的生活中较为普及,最方便的是只需要购买元件连上WiFi网络就能使用。所以目前基于WiFi技术的智能家居产品占的市场份额最大。缺点是安全性差,稳定性弱,功耗大,可连接的设备有限。WiFi网络的实际规模一般不会超过16个,而在智能家居的发展中,开关、照明、家电的数量肯定会远远多于16个,所以WiFi有它的优势,但局限性也很大,限制了发展。
2、ZigBee:关于ZigBee这项技术目前网上的争议比较大,大家撕的比较厉害,作为一个看客看的也比较爽,但是现在的能力有限,也看不出来谁说的比较有道理,这里就把正方和反方的观点都贴出来,大家自己判断
先介绍一下ZigBee技术的概述,ZigBee技术是一种近距离、低复杂度、低功耗、低速率、低成本的双向无线通讯技术,ZigBee可以工作在24GH(全球)、868MHz(欧洲)、915MHz(美国)3个频段上,最高250Kbit/s,最低20Kbit/s,传输距离在10-75M之间,ZigBee的安全性是公认的比较好的,采用AES-128加密方式,另外,ZigBee网络的自组织网和自愈能力强。
上面对ZigBee技术做了一个简单的介绍,下面开始介绍反方的观点:关于成本的问题反方的观点是ZIGBEE芯片出货量比较大的TI公司的CC2430,CC2530以及Freescale的MC1319X,MC1322X系列,其成本均在2~3美金左右,再考虑到其他外围器件和相关24G射频器件,BOM成本难以低于10美金。在淘宝查了一下确实ZigBee的芯片价格在RMB20元以上,其他的外围器件加起来估计要超过RMB50元,这样的成本在价格上在智能家居上确实略高。
另外一个是通信的稳定性,目前在国内ZigBee技术的主要采用ISM频段的24GHz,衍射能力弱,穿墙能力弱,容易受到障碍物的影响,而且容易受到同频段的WiFi和蓝牙的干扰。
另一个是自组网的实用性,自组网原本的优点能够感知其他节点的存在,并确定连接关系,组成结构化的网络,并且在某一个节点移动后能够自动的重新感知,组成网络。但是在家庭的实际应用中,开关、照明、窗帘、防盗器等在安装完毕后基本不会移动,所以反方的观点认为自组网的有点没有作用。
最后一个吐槽的点是ZigBee的网络容量,ZigBee支持高达65000个节点,但是在家庭的使用中可能不会超过100个,所以这个也没有实用的价值。(个人认为这条观点站不住脚,有备无患总是好的)
后面的是正方公正的反驳反方的观点:
关于成本,说ZigBee的成不高,但是跟wifi比起来成本已经很低了,常见的wifi芯片都只是射频前端加上基带,所有的协议栈都是在主机MCU/CPU完成的,并且绝大多数这些MCU/CPU都是需要跑linux的,所以都是2颗芯片的方案,所以必须加一起算成本。而单芯片的wifi解决方案现在也有,但是成本高到吓人,单卖7~10美金,批量的也要5美金左右,并且其也不支持大数据量。(虽然不知道正方为啥只和wifi去比,可能wifi的成不最高,但是这样也不能体现ZigBee的成不优势啊)
关于通信,反方的观点的是24GHz的频段穿墙都弱,wifi、蓝牙都是一样的(居然这么红果果的承认了),墙体会大大降低信号强度,但是ZigBee的优势在于网络结构,可以一跳一跳的向外衍生,每多一个节点,就相当于有了一个中继器,可以把通信方位扩大1倍。而wifi和蓝牙的通信距离看的是直接通信距离,也就是天线的好坏。
自组网的功能除了上面讲的扩展通信的范围外,正方的观点还认为未来的智能家居不可能只用于开关、插座、冰箱这些静物上面,还会有传感器、遥控、扫地机器人之类的移动物体。
关于容量的问题还是跟wifi进行的比较,反方认为容量过大,但是wifi能够连接超过100个的的设备吗?答案是不能。所以容量大还是有好处的。
以上的就是正方和反方的所有有用的观点了,虽然都比较片面,但还是可以参考一下。
3、Z-wave:Z-Wave是一种新兴的基于射频的、低成本、低功耗、高可靠、适于网络的短距离无线通信技术。工作频带为90842MHz(美国)~86842MHz(欧洲),采用FSK(BFSK/GFSK)调制方式,数据传输速率为96 kbps,信号的有效覆盖范围在室内是30m,室外可超过100m,适合于窄带宽应用场合。
Z-Wave的优势Z-Wave采用了动态路由技术,每个Slave内部都存有一个路由表,该路由表由Controller写入。存储信息为该Slave入网时,周边存在的其他Slave的NodeID。这样每个Slave都知道周围有哪些Slaves,而Controller存储了所有Slaves的路由信息。这样包在发送的时候已经规定好了通过的路径。
但是缺点也很明显,一是能容纳的节点较少,理论值为256个,实际上很多厂商只能做到容纳20-30个。二是树状组网结构,一旦树枝上端断掉,下端的所有设备将无法与网关通信。三是没有加密方式,安全性较差。还有一个需要关注的点是Z-Wave所用的频段在我国是非民用的,所以Z-Wave的智能家居更多的还是用在海外。
另外,Z-Wave的标准是独立开发的私有无线标准,不像其他无线标准那样开放。

首先,我们来理一理WiFi信号与路由器和WiFi模块的关系;WiFi模块又名串口WiFi模块,属于物联网传输层,功能是将串口或TTL电平转为符合WiFi无线网络通信标准的嵌入式模块,内置无线网络协议IEEE80211bgn协议栈以及TCP/IP协议栈。不管是自家的WiFi信号还是商家的WiFi信号,必不可少的就是路由器。而在路由器中最关键的作用就是WiFi模块,没有WiFi模块,路由器对你来说就是一个空壳,可以说wifi模块才是把有线转换成无线的信号供大家上网的关键。举个例子:如果是AP路由的话用AP WiFi模块SKW71就可以了,有4种通信接口USB/WAN/LAN/UART,传输距离可以达到150米。

然后,我们一起来了解什么是AP以及AP WiFi模块;AP就是无线交换机,当无线AP和普通以太网交换机连接起来时,无线网络和有线网络就无缝的组合到一起了,一般是多台无线路由器扩展信号覆盖用的。比如需要布置网络的空间比较大,第一台放在一定区域做Router,但是无线信号离得远了会不稳定。那么可以在临近的区域放置第二台无线路由器,第二台通过网线连接到第一台上,这样整个区域的WiFi信号覆盖就会比较均匀了。

AP WiFi模块

AP WiFi模块SKW71是一个1T1R,符合80211n Wi-Fi标准的无线模块。它集成了1个24K的MIPS处理器,2个高速以太网接口, 一个USB20接口, 一个I2S接口和多个GPIO。

SKW71的主芯片是Atheros的AR9331, 在80211n Wi-Fi标准下,20MHz的频宽能达到722Mbps数据传输,40MHZ的频宽能达到150Mbps数据传输。该模块支持AP,client和中继模式以及串口WiFi。

什么情况下适合用AP wifi模块:

与WiFi模块的通讯接口为网口(WAN/LAN)

硬AP模块—模块带MCU、 *** 作系统

产品为USB接口为从设备(如USB 3G/4G、USB摄像头等)


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/13025848.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存