农民想学养殖技术到哪里去学?

农民想学养殖技术到哪里去学?,第1张

百度知道
养殖技术在哪学?展开
机紫琼7f
生活家
营业员
关注
成为第552位粉丝
一是大中院校,每个省都有农业院校,可以考取为正式生,去学习。一般在四年,或者三年。
二是大中院校涵授班。全国各大中院校都有涵授班。
三是各县农广校。这个比较普遍,也比较适合,而且也为农民培养了大量专业人才。
四是自学。具有高中文化知识,就能自学养殖基础知识,有专门自学教材。
五是到养殖场去打工。这也是一个好办法,边挣钱,边学习,一举两得,能够学习到很多知识。
养殖技术
发酵床就是在养殖过程中给牲畜一个自然生态的原始生存环境,发酵床过程中主要包括的改善居住环境及喂养两方面。居住环境就是建造发酵床,喂养就是饲养纯生态的发酵饲料以及饮水改善,在这两个方面给予牲畜的居住及喂养过程中一个自然生态的生存环境。
发酵床生态养殖技术的核心理念是:通过参与垫料和牲畜粪便协同发酵作用,快速转化生粪、尿等养殖废弃物,消除恶臭,抑制害虫、病菌,同时,有益微生物菌群能将垫料、粪便合成可供牲畜食用的糖类、蛋白质、有机酸、维生素等营养物质,增强牲畜抗病能力,促进牲畜健康生长。
发酵床分地下式发酵床和地上式发酵床两种。地下式发酵床要求向地面以下挖80-100厘米,填满制成的有机垫料,再将牲畜放入,就可以自由自在地生长了。在地下水位高的地方,可采用地上式发酵床,地上式发酵床是在地面上砌成,要求有一定深度,再填入已经制成的有机垫料即可。
应用发酵床养殖专用菌剂配套的生态养猪技术,可彻底解决养殖对环境的污染,提高饲料利用率和牲畜肉品质,变废为宝,节工省本。是一种无污染、高效益的环保技术。
回答于 2021-09-01
赞同1
2022哪里学技术好点击进入哪里的技术好找工作
值得一看的学技术好相关信息推荐
哪里学技术好想要高薪当然是就选北大青鸟佳音校区,下设三大校区,六大专业,精英化小班制教学,以技能/学位/经验三项一体化培养,10年以上项目开发经验,未来好就业。
云教互动科技广告
2022哪里学技术点击查询哪里学技术
值得一看的学技术相关信息推荐
哪里学技术想要高薪当然是就选北大青鸟佳音校区,下设三大校区,六大专业,精英化小班制教学,以技能/学位/经验三项一体化培养,
云教互动科技广告
在哪里可以学习养殖技术?
三十六行行行有状元,条条道路通罗马,只要在选择的时候能够有一个正确的认识,加上你后期学习的努力学好一门技术,以后的生活肯定是不错的。在选择的时候,选好一个热门的技术,现在的话,感觉餐饮业发展很不错,尤其是湘菜、火锅这些,厨师现在是一个很有前途的职业。对于你来说,学个湘菜厨师什么的,应该是挺不错的。。提到养殖物联网技术开放平台,可以找深圳市朗锐恒科技开发有限公司。深圳市朗锐恒科技开发有限公司致力于养殖物联网技术开放平台,为养殖企业提供养殖物联网平台综合系统,根据养殖企业及养殖设备厂家的实际需求,为他们开发设计相关的功能产品。
在哪里可以学习养殖技术?
养殖技术,你可以到书店里面去购买相关性的书籍!百度养殖网、养殖吧、QQ养殖群上都可以查找到相关资料!也可以和搞养殖的朋友们相互交流的!
21点赞1评论
更多专家
养殖技术在哪学?
专家1对1在线解答问题
5分钟内响应 | 万名专业答主
马上提问
最美的花火 咨询一个三农问题,并发表了好评
lanqiuwangzi 咨询一个三农问题,并发表了好评
garlic 咨询一个三农问题,并发表了好评
1888493 咨询一个三农问题,并发表了好评
篮球大图 咨询一个三农问题,并发表了好评
动物乐园 咨询一个三农问题,并发表了好评
AKA 咨询一个三农问题,并发表了好评
我想养殖,去哪里学技术?
首先自己要确定养殖什么动物,然后再找学习的地方。一般都是到愿意推广养殖的养殖场去学习。都要缴费的哦!

如果我们用电脑软件来管理,只需要把每只母猪的初始条件输入电脑。随着时间的变化,电脑每天可以告诉我们每头母猪的情况,比如:哪些猪要及时配种,哪些猪要打疫苗,哪些猪要生孩子,等等,让更多的人知道最近要做的工作。计算机不仅可以保存每头种猪的系谱文件,还可以提供系谱分析,帮助确定种猪的表现,选择仔猪的家系,完成选择和配种工作,帮助生成新生仔猪的系谱。

在实践中要选择最好的,消除不好的并不容易。如果通过计算机软件自动计算出每头种猪的表现,然后按照一些指标或者综合指标进行排序,那么养殖场的劣质种猪就会越来越少。本项将记录所有猪的全部病史和防疫措施,通过猪的抗体分析掌握猪的抗病能力,通过死亡数据分析找出主要致病因素。电脑可以保存所有供应商和客户的档案,每次采购或销售的记录,提供各种采购和销售的统计报表,分析原材料和产品的价格变化,分析客户、销售区域和销售人员的采购和销售变化,通过排序进行比较。

我国生猪年产量约7亿头,占肉类的60%以上。近年来,由于非洲猪瘟的影响,国内猪肉价格一直居高不下。因此,发展养猪业对保证市场供应、增加农民收入、促进经济社会稳定发展具有重要意义。然而,传统的养猪方式面临着养殖成本高、生产效率低、养殖环境差的问题。将人工智能技术应用于养殖领域的智能养猪,为养猪业提供了新的发展方向。射频识别是一种自动识别技术,利用射频进行非接触式双向数据通信,利用射频读写记录介质,从而达到识别目标、交换数据的目的。该技术广泛应用于智能养猪行业,主要用于个体识别。

我国尚未建立完整的农业物联网技术标准体系,传感层、传输层和应用层也没有统一的技术规范,极大地制约了物联网技术在农业领域的产业化应用和发展。我国智能农业设备发展滞后,上市前缺乏严格的质量检验,设备稳定性差,故障率高,维护成本高,后续技术服务不足,价格高,性价比低,因此养猪场购买智能设备的动机不够强烈应用模型的实用性有待加强,养猪场个体识别、精确饲养、智能环境控制的机器学习已经取得了一系列进展,但有些模型和算法已经不能满足指导养猪场精确生产的需要,不能应用于实际生产。

近年来,智慧农业在政府和市场的推动下在全国各地开始逐步普及应用,尤其是农业智能大棚环境监控系统解决方案采用多。当然,智慧农业的推广,也离不开哪些提供智慧农业解决方案的企业的参与。
目前国内比较成熟的智能大棚、智能养殖场环境监控系统方案商很多,像深圳_信立XL,长期致力于设计智能网关、智能测控装置、智能环境装置、智能转换器、智能传感器、上位监控软件及无线数据采集传输系统解决方案,拥有12年智能传感网络设计研发、解决方案设计、现场技术服务,是国内专业智慧农业智能大棚环境监控系统、智慧养殖环境监控系统、仓储馆藏环境监控系统、智慧管网监控系统,重大危险源环境监测系统,能源管理系统、大气环境质量监控系统及生产制造智能监控系统等解决方案提供商。

本专题我共整理了10篇文章,来自中国农业科学院农业质量标准与检测技术研究所、南京农业大学、英国林肯大学、华南农业大学、江南大学、国家农业智能装备工程技术研究中心、浙江大学、中国科学院、吉林农业大学、西北农林 科技 大学、国家信息农业工程技术中心等单位。

文章包含农产品质量安全纳米传感器、太阳能杀虫灯、分簇路由算法、农田物联网混合多跳路由算法、水产养殖溶解氧传感器研制、土壤养分近场遥测方法、农机远程智能管理平台、水肥浓度智能感知与精准配比、果园多机器人通信等内容,供大家阅读、参考。

专题--农业传感器与物联网

Topic--Agricultural Sensor and Internet of Things

[1]王培龙, 唐智勇 农产品质量安全纳米传感应用研究分析与展望[J] 智慧农业(中英文), 2020, 2(2): 1-10

WANG Peilong , TANG Zhiyong Application analysis and prospect of nanosensor in the quality and safety of agricultural products[J] Smart Agriculture, 2020, 2(2): 1-10

知网阅读

[2]杨星, 舒磊, 黄凯, 李凯亮, 霍志强, 王彦飞, 王心怡, 卢巧玲, 张亚成 太阳能杀虫灯物联网故障诊断特征分析及潜在挑战[J] 智慧农业(中英文), 2020, 2(2): 11-27

YANG Xing, SHU Lei, HUANG Kai, LI Kailiang, HUO Zhiqiang, WANG Yanfei, WANG Xinyi, LU Qiaoling, ZHANG Yacheng Characteristics analysis and challenges for fault diagnosis in solar insecticidal lamps Internet of Things[J] Smart Agriculture, 2020, 2(2): 11-27

摘要: 太阳能杀虫灯物联网(SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络(WSNs)中的体现,并进一步对WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的WSNs故障诊断方法。此外,还探讨了SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的WSNs故障诊断调试工具,如Sympathy、Clairvoyant、SNIF和Dustminer。最后,强调了SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。

知网阅读

[3]汪进鸿, 韩宇星 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J] 智慧农业(中英文), 2020, 2(2): 28-47

WANG Jinhong, HAN Yuxing Cognitive radio sensor networks clustering routing algorithm for crop phenotypic information edge computing collection[J] Smart Agriculture, 2020, 2(2): 28-47

摘要: 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络(CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡(DSEB)的事件驱动分簇路由算法。算法包括:(1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;(2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点-主网关节点两种情况;(3)基于频谱变化和通信服务质量(QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设sink为中心),即在网关或簇头节点选取计算式中引入与节点到sink的距离成正比的权重系数。算法仿真结果表明,与采用K-medoid分簇和能量感知的事件驱动分簇(ERP)路由方案相比,在CRSN节点数为定值的前提下,基于DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

知网阅读

[4]顾浩, 王志强, 吴昊, 蒋永年, 郭亚 基于荧光法的溶解氧传感器研制及试验[J] 智慧农业(中英文), 2020, 2(2): 48-58

GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya A fluorescence based dissolved oxygen sensor[J] Smart Agriculture, 2020, 2(2): 48-58

摘要:溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感器的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换(FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器的测量范围是0~20 mg/L,响应延迟小于2 s,溶氧敏感膜使用寿命约1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器的研发与市场化奠定了良好的基础。

知网阅读

[5]矫雷子, 董大明, 赵贤德, 田宏武 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J] 智慧农业(中英文), 2020, 2(2): 59-66

JIAO Leizi, DONG Daming, ZHAO Xiande, TIAN Hongwu Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J] Smart Agriculture, 2020, 2(2): 59-66

摘要: 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、 *** 作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围1260~1610 nm的8通道窄带激光二极管作为近红外光源,通过测量8通道激光光束的土壤反射率,建立土壤养分中氮(N)关于土壤反射率的计量模型,实现了N的快速检测。在74组已知N含量的土壤样品中,选取54组作为训练集,20组作为预测集。基于一般线性模型,对训练集中土壤N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型R2达到097。基于建立的计量模型,预测集中土壤N含量预测值与参考值的决定系数R2达到09,结果表明该方法具有土壤养分现场快速检测的能力。

知网阅读

[6]朱登胜, 方慧, 胡韶明, 王文权, 周延锁, 王红艳, 刘飞, 何勇 农机远程智能管理平台研发及其应用[J] 智慧农业(中英文), 2020, 2(2): 67-81

ZHU Dengsheng, FANG Hui, HU Shaoming, WANG Wenquan, ZHOU Yansuo, WANG Hongyan, LIU Fei, HE Yong Development and application of an intelligent remote management platform for agricultural machinery[J] Smart Agriculture, 2020, 2(2): 67-81

摘要: 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度GNSS定位系统前提下的作业面积的计算方法、GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。

知网阅读

[7]金洲, 张俊卿, 郭红燕, 胡宜敏, 陈翔宇, 黄河, 王红艳 水肥浓度智能感知与精准配比系统研制与试验[J] 智慧农业(中英文), 2020, 2(2): 82-93

JIN Zhou, ZHANG Junqing, GUO Hongyan, HU Yimin, CHEN Xiangyu, HUANG He, WANG Hongyan Development and testing of intelligent sensing and precision proportioning system of water and fertilizer concentration[J] Smart Agriculture, 2020, 2(2): 82-93

摘要: 为解决农场当地当时的复合肥料精准化配料问题,本研究将水肥一体化智能灌溉施肥系统作为研究对象,构建了水肥浓度智能感知与精准配比系统。首先提出现场在线水肥溶液智能感知模型的快速建立方法,利用数据分析算法从传感器实时监测的一系列浓度梯度的肥料溶液中挖掘出模型。其次基于上述模型设计水肥浓度智能感知与精准配比系统的框架结构,阐述系统工作原理;并通过三种水体模拟在线配肥验证了该系统原位指导水肥浓度配比的有效性,同时评价了水体电导率对水肥配比浓度的干扰。试验结果表明,正则化条件下二阶的多项式拟合曲线是表达溶液电导率与水肥浓度的变化关系最优的模型,相关系数R2均大于0999,由此模型可得出用户关心的复合肥各指标浓度。三种水体模拟在线配肥结果表明,水体会干扰电导率导致无法准确反演水肥配比的浓度,相对偏差值超过了01。因此,本研究提出的在线水肥智能感知与精准配比系统实现了消除当地水体电导率对水肥配比准确性的干扰,通过模型计算实现复合肥精准化配比,并得出各指标浓度。该系统结构简单,配比精准,易与现有水肥一体机或者人工配肥系统结合使用,可广泛应用于设施农业栽培、果园栽培和大田经济作物栽培等环境下的精准智能施肥。

知网阅读

[8]孙浩然, 孙琳, 毕春光, 于合龙 基于粒子群与模拟退火协同优化的农田物联网混合多跳路由算法[J] 智慧农业(中英文), 2020, 2(3): 98-107

SUN Haoran, SUN Lin, BI Chunguang, YU Helong Hybrid multi-hop routing algorithm for farmland IoT based on particle swarm and simulated annealing collaborative optimization method[J] Smart Agriculture, 2020, 2(3): 98-107

摘要: 农业无线传感器网络对农田土壤、环境和作物生长的多源异构信息的获取起关键作用。针对传感器在农田中非均匀分布且受到能量制约等问题,本研究提出了一种基于粒子群和模拟退火协同优化的农田物联网混合多跳路由算法(PSMR)。首先,通过节点剩余能量和节点度加权选择簇首,采用成簇结构实现异构网络高效动态组网。然后通过簇首间多跳数据结构解决簇首远距离传输能耗过高问题,利用粒子群与模拟退火协同优化方法提高算法收敛速度,实现sink节点加速采集簇首中的聚合数据。对算法的仿真试验结果表明,PSMR算法与基于能量有效负载均衡的多路径路由策略方法(EMR)相比,无线传感器网络生命周期提升了57%;与贪婪外围无状态路由算法(GPSR-A)相比,在相同的网络生命周期内,第1个死亡传感器节点推迟了两轮,剩余能量标准差减少了004 J,具有良好的网络能耗均衡性。本研究提出的PSMR算法通过簇首间多跳降低远端簇首额外能耗,提高了不同距离簇首的能耗均衡性能,为实现大规模农田复杂环境的长时间、高效、稳定地数据采集监测提供了技术基础,可提高农业物联网的资源利用效率。

知网阅读

[9]毛文菊, 刘恒, 王东飞, 杨福增, 刘志杰 面向果园多机器人通信的AODV路由协议改进设计与测试[J] 智慧农业(中英文), 2021, 3(1): 96-108

MAO Wenju, LIU Heng, WANG Dongfei, YANG Fuzeng, LIU Zhijie Improved AODV routing protocol for multi-robot communication in orchard[J] Smart Agriculture, 2021, 3(1): 96-108

摘要: 针对多机器人在果园中作业时的通信需求,本研究基于Wi-Fi信号在桃园内接收强度预测模型,提出了一种引入优先节点和路径信号强度阈值的改进无线自组网按需平面距离向量路由协议(AODV-SP)。对AODV-SP报文进行设计,并利用NS2仿真软件对比了无线自组网按需平面距离向量路由协议(AODV)和AODV-SP在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能。仿真试验结果表明,本研究提出的AODV-SP路由协议在发起频率、路由开销、平均端到端时延及分组投递率4个方面的性能均优于AODV协议,其中节点的移动速度为5 m/s时,AODV-SP的路由发起频率和路由开销较AODV分别降低了365%和709%,节点的移动速度为8 m/s时,AODV-SP的分组投递率提高了059%,平均端到端时延降低了1309%。为进一步验证AODV-SP协议的性能,在实验室环境中搭建了基于领航-跟随法的小型多机器人无线通信物理平台并将AODV-SP在此平台应用,并进行了静态丢包率和动态测试。测试结果表明,节点相距25 m时静态丢包率为0,距离100 m时丢包率为2101%;动态行驶时能使机器人维持链状拓扑结构。本研究可为果园多机器人在实际环境中通信系统的搭建提供参考。

知网阅读

[10]黄凯, 舒磊, 李凯亮, 杨星, 朱艳, 汪小旵, 苏勤 太阳能杀虫灯物联网节点的防盗防破坏设计及展望[J] 智慧农业(中英文), 2021, 3(1): 129-143

HUANG Kai, SHU Lei, LI Kailiang, YANG Xing, ZHU Yan, WANG Xiaochan, SU Qin Design and prospect for anti-theft and anti-destruction of nodes in Solar Insecticidal Lamps Internet of Things[J] Smart Agriculture, 2021, 3(1): 129-143

摘要: 太阳能杀虫灯在有效控制虫害的同时,可减少农药施药量。随着其部署数量的增加,被盗被破坏的报道也越来越多,严重影响了虫害防治效果并造成了较大的经济损失。为有效地解决太阳能杀虫灯物联网节点被盗被破坏问题,本研究以太阳能杀虫灯物联网为应用场景,对太阳能杀虫灯硬件进行改造设计以获取更多的传感信息;提出了太阳能杀虫灯辅助设备——无人机杀虫灯,用以被盗被破坏出现后的部署、追踪和巡检等应急应用。通过上述硬件层面的改造设计和增加辅助设备,可以获取更为全面的信息以判断太阳能杀虫灯物联网节点被盗被破坏情况。但考虑到被盗被破坏发生时间短,仅改造硬件层面还不足以实现快速准确判断。因此,本研究进一步从内部硬件、软件算法和外形结构设计三个层面,探讨了设备防盗防破坏的优化设计、设备防盗防破坏判断规则的建立、设备被盗被破坏的快速准确判断、设备被盗被破坏的应急措施、设备被盗被破坏的预测与防控,以及优化计算以降低网络数据传输负荷六个关键研究问题,并对设备防盗防破坏技术在太阳能杀虫灯物联网场景中的应用进行了展望。

知网阅读

微信交流服务群

为方便农业科学领域读者、作者和审稿专家学术交流,促进智慧农业发展,为更好地服务广大读者、作者和审稿人,编辑部建立了微信交流服务群,有关专业领域内的问题讨论、投稿相关的问题均可在群里咨询。

入群方法: 加我微信 331760296 备注: 姓名、单位、研究方向 ,我拉您进群,机构营销广告人员勿扰。

信息发布

科研团队介绍及招聘信息、学术会议及相关活动 的宣传推广

这种案例其实挺多的。25000平方米的钢架温室大棚,每年培育20多个蔬菜品种优质种苗达亿株,可供3万多亩商品蔬菜种植;1000万棒香菇、木耳、平菇、银耳、灵芝、秀珍菇等菌种,年产量达400多吨。这是广西桂北山区最大的蔬菜(食用菌)集约化育苗基地——省级农业产业化重点龙头企业,广西禾美生态农业股份有限公司位于融水的智慧农业种植基地。
作为省级农业示范区,禾美生态多年来已实现集约化生产,无疑具备良好的智慧农业带头示范意义。但禾美生态也和我国大多数农业企业一样,长期以来缺乏对农业生产数据的积累与利用,缺少农业物联网的基础设施搭建,以及智能化的种植管理,虽然拥有先进的温室大棚,却仍旧沿用传统的人工监测控制的模式。
譬如在食用菌温室大棚,CO2浓度、空气温湿度严重影响着作物的健康生长,禾美生态一直沿用老的工作方法,依靠工作人员逐一到温室大棚中利用检测仪进行测量,一旦浓度超标,或是温度过高,工作人员便手动开关大棚的风机、侧窗、天窗等。这种方式不仅耗费大量的人力成本,最为关键的是效率低下,生产风险高,一旦不能及时发现异常情况,往往会造成重大的损失。
这种高度依赖人的传统管理方式,一直制约着禾美生态温室大棚的转型发展。为了加强温室种植的智能化、标准化,禾美生态引入慧云信息的智慧农业监控系统,打造智能大棚。
智能大棚为温室种植节本增效,促进农业转型
蔬菜育苗与食用菌的培育需要非常精细化的管理,需要精准监测温室大棚的气候环境、土壤环境、作物长势、病虫害情况等。慧云信息通过在大棚中搭建“农业物联网”监控网络,对禾美生态25000平方米的温室大棚进行智能监控,实时监测土壤湿度、土壤PH值、空气温湿度和气压、光照强度、CO2浓度等
同时实现对大棚的各种设施设备进行远程自动化控制,当温室内环境失调时,系统能够马上启动预警装置,通知管理人员,及时采取补救措施,这样大大杜绝了以往环境失调而管理人员发现不及时导致损失的现象。比如当温室内的CO2浓度超过适宜值,系统就会自动预警提醒管理者,并自动打开通风装置,保证温室内作物始终保持在最佳生长状态。

物联网应用涉及国民经济和人类社会生活的方方面面,因此,“物联网”被称为是继计算机和互联网之 后的第三次信息技术革命。信息时代,物联网无处不在。由于物联网具有实时性和交互性的特点,因此 ,物联网的应用领域主要有如下。\x0d\ \x0d\1、城市管理\x0d\ \x0d\(1)智能交通(公路、桥梁、公交、停车场等)物联网技术可以自动检测并报告公路、桥梁的“健康状 况”,还可以避免过载的车辆经过桥梁,也能够根据光线强度对路灯进行自动开关控制。\x0d\ \x0d\ 在交通控制方面,可以通过检测设备,在道路拥堵或特殊情况时,系统自动调配红绿灯,并可以向车主 预告拥堵路段、推荐行驶最佳路线。\x0d\ \x0d\ 在公交方面,物联网技术构建的智能公交系统通过综合运用网络通信、GIS地理信息、GPs定位及电子控 制等手段,集智能运营调度、电子站牌发布、IC卡收费、ERP(快速公交系统)管理等于一体。通过该系 统可以详细掌握每辆公交车每天的运行状况。另外,在公交候车站台上通过定位系统可以准确显示下一 趟公交车需要等候的时间;还可以通过公交查询系统,查询最佳的公交换乘方案。\x0d\ \x0d\ 停车难的问题在现代城市中已经引发社会各界的热烈关注。通过应用物联网技术可以帮助人们更好地找 到车位。智能化的停车场通过采用超声波传感器、摄像感应、地感性传感器、太阳能供电等技术,第一 时间感应到车辆停入,然后立即反馈到公共停车智能管理平台,显示当前的停车位数量。同时将周边地 段的停车场信息整合在一起,作为市民的停车向导,这样能够大大缩短找车位的时间。\x0d\ \x0d\(2)智能建筑(绿色照明、安全检测等)\x0d\ \x0d\ 通过感应技术,建筑物内照明灯能自动调节光亮度,实现节能环保,建筑物的运作状况也能通过物联网 及时发送给管理者。同时,建筑物与GPs系统实时相连接,在电子地图上准确、及时反映出建筑物空间地 理位置、安全状况、人流量等信息。\x0d\ \x0d\(3)文物保护和数字博物馆\x0d\ \x0d\ 数字博物馆采用物联网技术,通过对文物保存环境的温度、湿度、光照、降尘和有害气体等进行长期监 测和控制,建立长期的藏品环境参数数据库,研究文物藏品与环境影响因素之间的关系,创造最佳的文 物保存环境,实现对文物蜕变损坏的有效控制。\x0d\ \x0d\(4)古迹、古树实时监测\x0d\ \x0d\ 通过物联网采集古迹、古树的年龄、气候、损毁等状态信息。及时作出数据分析和保护措施。\x0d\ \x0d\ 在古迹保护上实时监测能有选择地将有代表性的景点图像传递到互联网上,让景区对全世界做现场直播 ,达到扩大知名度和广泛吸引游客的目的。另外,还可以实时建立景区内部的电子导游系统。\x0d\ \x0d\(5)数字图书馆和数字档案馆\x0d\ \x0d\ 使用RFID设备的图书馆/档案馆,从文献的采访、分编、加工到流通、典藏和读者证卡,RFD标签和阅读 器已经完全取代了原有的条码、磁条等传统设备。将RFID技术与图书馆数字化系统相结合,实现架位标 识、文献定位导航、智能分拣等。\x0d\ \x0d\ 应用物联网技术的自助图书馆,借书和还书都是自助的。借书时只要把身份z或借书卡插进渎卡器 里,再把要借的书在扫描器上放一下就可以了。还书过程更简单,只要把书投进还书口,传送设备就自 动把书送到书库。同样通过扫描装置,工作人员也能迅速知遭书的类别和位置以进行分拣。\x0d\ \x0d\2、数字家庭\x0d\ \x0d\ 如果简单地将家庭里的消费电子产品连接起来,那么只是—个多功能遥控器控制所有终端,仅仅实现了 电视与电脑、手机的连接,这不是发展数字家庭产业的初衷。只有在连接家庭设备的同时,通过物联网 与外部的服务连接起来,才能真正实现服务与设备互动。有了物联网,就可以在办公室指挥家庭电器的 *** 作运行,在下班回家的途中,家里的饭菜已经煮熟,洗澡的热水已经烧好,个性化电视节目将会准点 播放;家庭设施能够自动报修;冰箱里的食物能够自动补货。\x0d\ \x0d\3、定位导航\x0d\ \x0d\ 物联网与卫星定位技术、GSM/GPRS/CDMA移动通讯技术、GIS地理信息系统相结合,能够在互联网和移 动通信网络覆盖范围内使用GPs技术,使用和维护成本大大降低,并能实现端到端的多向互动。\x0d\ \x0d\4、现代物流管理\x0d\ \x0d\ 通过在物流商品中植入传感芯片(节点),供应链上的购买、生产制造、包装/装卸、堆栈、运输、配 送/分销、出售、服务每—个环节都能无误地被感知和掌握。这些感知信息与后台的GIS/GPS数据库无 缝结合,成为强大的物流信息嘲络。\x0d\ \x0d\5、食品安全控制\x0d\ \x0d\ 食品安全是国计民生的重中之重。通过标签识别和物联网技术,可以随时随地对食品生产过程进行实时 监控,对食品质量进行联动跟踪,对食品安全事故进行有效预防,极大地提高食品安全的管理水平。\x0d\ \x0d\6、零售\x0d\ \x0d\ RFID取代零售业的传统条码系统(Barcode),使物品识别的穿透性(主要指穿透金属和液体)、远距离 以及商品的防盗和跟踪有了极大改进。\x0d\ \x0d\7、数字医疗\x0d\ \x0d\ 以RFID为代表的自动识别技术可以帮助医院实现对病人不问断地监控、会诊和共享医疗记录,以及对医 疗器械的追踪等。而物联网将这种服务扩展至全世界范围。RFID技术与医院信息系统(HIS)及药品物流系统的融合,是医疗信息化的必然趋势。\x0d\ \x0d\8、防入侵系统\x0d\ \x0d\ 通过成千上万个覆盖地面、栅栏和低空探测的传感节点,防止入侵者的翻越、偷渡、恐怖袭击等攻击性 入侵。上海机场和上海世界博览会已成功采用了该技术。\x0d\ \x0d\ 据预测,到2035年前后。中国的物联网终端将达到数千亿个。随着物联网的应用普及,形成我国的物联 网标准规范和核心技术,成为业界发展的重要举措。解决好信息安全技术,是物联网发展面临的迫切问题。\x0d\根据我的预测未来物联网的市场潜力非常巨大,现在各大公司巨头也已经开始布局物联网市场了,所以掌握物联网核心技术是非常有益的!!

国家扶持的水产养殖项目:1、稻渔综合种养模式。稻渔综合种养模式就是充分利用光、热、水、气、土、肥、种等自然资源,生产出优质稻米和各种名优水产品等,比如种水稻时,在稻田里养殖一些稻花鱼、小龙虾,青蛙等,使效益最大化。2、智能渔场的智慧渔业模式。智能渔场的智慧渔业模式就是支持发展深远海绿色养殖,鼓励深远海大型智能化养殖渔场建设,引导物联网、大数据、人工智能等现代信息技术与水产养殖生产深度融合。3、休闲渔业。休闲渔业就是推动养殖、加工、流通、休闲服务等一二三产业相互融合、协调发展,这种比较健全,但有一定的挑战性,目前已正在尝试。
4、鱼菜共生的新商业模式。鱼菜共生的新商业模式就是集蔬菜栽培与高密度鱼养殖为一体的生态系统,比如鱼池上面可养一些水培蔬菜,这样鱼产生的排泄废弃物就可为蔬菜生长提供富足的营养,可实现双倍效益。
5、渔光互补的跨界渔业模式。渔光互补的跨界渔业模式就是渔业养殖与光伏发电相结合,形成“上可发电、下可养鱼”的发电新模式,对于农民来说,收益相当可观。
法律依据
《关于加快推进水产养殖业绿色发展的若干意见》规定 共8个部分、26条具体的政策措施,围绕加强科学布局、转变养殖方式、改善养殖环境、强化生产监管、拓宽发展空间、加强政策支持及落实保障措施等方面作出全面部署。提出了三个方面的措施:一是强化投入品管理。强化水产养殖用饲料、兽药等投入品质量的监管,加强水产养殖用药的指导,严厉打击制售假劣水产养殖用饲料、兽药和违法用药及其他投入品的行为。投入品应该说是一个很关键的环节。二是加强质量安全监管。强化水产品质量安全属地监管职责,落实生产经营者质量安全的主体责任,加大产地养殖水产品质量安全风险监测评估和监督抽查的力度,深入排查风险隐患,推动养殖生产经营者建立健全养殖水产品追溯体系,推进行业诚信体系建设,保证水产品安全。三是加强疫病防控。健全水生动物疫病防控体系,加强水生动物疫病监测预警、风险评估和应急处置,完善渔业官方兽医队伍,全面实施水产苗种产地检疫和监督执法,优化水产养殖用疫苗审批流程,加快疫苗推广和应用。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/13277295.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-06
下一篇 2023-07-06

发表评论

登录后才能评论

评论列表(0条)

保存