基于单端10 bit SAR ADC的IP核设计与实现

基于单端10 bit SAR ADC的IP核设计与实现,第1张

  随着集成电路数字信号处理技术的快速发展,我们可以在数字域里实现比模拟域里更高精度,更快速度,更低价格的各种信号处理功能,因此,模数转换器作为模拟系统和数字系统的接口就变得非常重要。而在各种类型的模数转换器当中,逐次逼近型的模数转换器(SAR ADC)因为其低功耗,中等精度和中高分辨率而得到了广泛的应用。而SARADC从输入来分,可以分为单端输入和双端(全差分)输入。虽然一个双端SAR ADC电路架构可以获得更好的共模抑制比和和较少的失真,而得到了广泛的应用,但在现实生活中对单端的ADC仍有一定的需求,如光栅尺中绝对码道信号的检测。本文则是在一种常见单端SAR ADC电路架构的基础上,对D/A转换器进行了改进,在不增加电容面积的情况下,减小了D/A转换时电容和开关所消耗的能量,减小了电容阵列转换的建立时间。

  1 ADC整体电路设计

  本文设计的单端SAR ADC的整体架构如图1所示,主要包括以下4个部分:采样保持电路(Sample and Hold)、比较器(Comp)、10-bit逐次逼近寄存器及控制电路(SARLOGIC)、D/A转换电路(DAC)。

  基于单端10 bit SAR ADC的IP核设计与实现,第2张

  输入电压Vin通过采样保持电路得到采样电压Vsh,Vsh与DAC的输出Vdac通过比较器进行比较,比较结果传递给逐次逼近寄存器,逐次逼近寄存器一方面输出比较结果,另一方面控制DAC的转换开关,以便进行下一位的转换。

  1.1 SAR ADC的工作流程

  SAR ADC的工作流程如图2所示,它主要可以分为采样、清零阶段和比较阶段。

  第一步:采样、清零阶段。采样保持电路中的开关S,闭合,Vin=Vsh,属于跟随阶段;DAC中的电容C1p~C10p和C1n~C10n的下级板全部接GND,开关EN闭合,Vdac接GND,DAC处于清零阶段。

  第二步:比较阶段。采样保持电路中的开关Sa断开,Vsh为采样得到的电压;DAC中的电容C1p~C10p的下级板接Vref,其余开关不动,而开关EN断开,此时DAC的输出结果:

  基于单端10 bit SAR ADC的IP核设计与实现,第3张

  Vsh与Vdac进行比较,如果Vsh大于Vdac,则比较器输出为1,即D1=1,而逐次逼近寄存器根据比较结果,将电容C10n(MSB电容)的下级板偏转到Vref;反之D1=0,C10p的下级板偏转到GND。其余电容保持不变。

  第j步:根据上一步比较的结果,得到DAC的输出如下:

  基于单端10 bit SAR ADC的IP核设计与实现,第4张

  Vsh与Vdac进行比较,如果Vsh大于Vdac,则比较器输出为1,即Dj-1=1,而逐次逼近寄存器根据比较结果,将电容C(11-j)n的下级板偏转到Vref;反之Dj-1=0,C(11-j)p的下级板偏转到GND。其余电容保持不变。直至j=11,比较结束,进入下一个转换周期。

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/2494149.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-04
下一篇 2022-08-04

发表评论

登录后才能评论

评论列表(0条)

保存