基于LPDDR4多通道规范可以改善系统性能

基于LPDDR4多通道规范可以改善系统性能,第1张

LPDDR4是用于移动应用的最新双数据率同步DRAM,它是当今高端便携产品中常见的DRAM类型,应用于如Samsung Galaxy S6智能手机,Apple iPhone 6S [1],以及数种最新发布的设备。除了移动应用之外,预计LPDDR4会像其前任LPDDR3那样应用于平板电脑、轻薄笔记本电脑中,会采用“底层存储器”配置,亦即,DRAM以物理方式焊接在主板上。

LPDDR4在很小的PCB面积和体积上提供了巨大的带宽;在3200Mbps的数据率下,当两片Die封装在一起时,单个15毫米x15毫米LPDDR4封装包可提供25.6 GByte/s的带宽。LPDDR4建立在LPDDR2和LPDDR3的成功基础之上,增加了新的特性并引入了主要的结构变化。

本白皮书中阐明了LPDDR4与以前所有JEDEC DRAM规格的差异之处。讨论了下述方面:

设计人员为何选择LPDDR4

LPDDR4体系结构的亮点

如何最好地配置LPDDR4通道

如何处理具有多通道连接的2片和4片封装

通过系统级芯片(SOC)分割共享通道的优点

如何优化通道以实现最低功耗

为什么是LPDDR4?
LPDDR4包含多项特性,这使得SOC设计团队能够降低分离DRAM的功耗。对于诸如PC和服务器等桌面设备,通常将使用安装在双列直插内存模块(DIMM)上的DDR器件,所述DIMM位于64位宽总线上。这类板级解决方案能够就地升级DRAM容量,但需要长且负载较重的连接线,与较短的走线相比,它消耗的功率更高。对于使用LPDDR2、LPDDR3和LPDDR4的系统,每条总线上的内存器件通常数量更少,连接线也更短,因而消耗的功率比DDR2、DDR3和DDR4器件更低。

最后,LPDDR4 DRAM具有温度感知刷新特性,这有助于使DRAM的刷新率与DRAM的位单元本身的要求匹配,尤其是在低功率自刷新待机模式下更是如此。在待机模式下可自动启用该特性,类似地,在主动模式下可读取温度指示,使得LPDDR4控制器能够调节其自刷新率,从而与LPDDR4器件的热状态相符。

LPDDR4采用了针对移动装置的模型
在实际应用中,移动用户仅在较少的时间段内才会用到LPDDR4的最高工作频率。此时,用户或是采集或显示高清晰(4K)视频,或是玩具有高图形要求的游戏,或是处理图形,或是引导或加载新的软件。

在部分时间段内,内存会降至LPDDR3速度级别。这一性能水平足以支持文本、呼叫、网页浏览、照片、简单游戏:所有这些功能对CPUGPU没过高要求。

在大部分时间段内,移动设备并不使用,它或是在口袋内、或是在床边,此时DRAM断电或处于低速模式下。仅一个内存通道处于活动状态下,用于执行“始终在线、始终连接”任务。在该模式下,设备执行后台任务,如保持电池接触,接收消息,接收/显示推送通知,邮件同步,以及时间显示。

然而,正是由于最高使用时间的设备性能,很多移动用户升级了其设备,这正是该使用模式下优秀用户体验十分重要的原因之所在(图1)。

基于LPDDR4多通道规范可以改善系统性能,图1:最高使用时间是移动用户升级循环的驱动因素,第2张

 

图1:最高使用时间是移动用户升级循环的驱动因素

LPDDR4体系结构变化
与前代相比,LPDDR4规范中确定了多种性能和特性改进。最为重要的是,LPDDR4对体系结构进行了重大改变:LPDDR4器件采用了每一裸片上2个独立通道的布局方案。

DDR2、DDR3和DDR4器件的每一封装包提供了一套命令地址输入总线和一套数据总线,最为常见的是每一封装包一个裸片。LPDDR2和LPDDR3的每一封装包可提供1~4个裸片。对于LPDDR4、LPDDR3和LPDDR2,在双裸片和4裸片封装包情形下,通常提供了2套独立的命令地址输入和数据总线(通道)。换句话讲,LPDDR2和LPDDR3器件实施了部分多通道,其中,每一封装包提供了2个独立通道。LPDDR4将该特性发挥到极致,这是因为每一裸片都有两个独立通道,大多数封装包都有4个通道。

连接多个通道
LPDDR4体系结构天然具有2个通道(图2),每一裸片有2套命令地址输入和2套数据总线。LPDDR4的2裸片封装包提供了4个独立通道。为了更有效地使用LPDDR4,设计人员必须理解LPDDR4体系结构变化对SoC体系结构的影响。

基于LPDDR4多通道规范可以改善系统性能,图2:LPDDR4双通道体系结构,第3张

 

图2:LPDDR4双通道体系结构

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/2603277.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-09
下一篇 2022-08-09

发表评论

登录后才能评论

评论列表(0条)

保存