如何用集成驱动器优化氮化镓性能?

如何用集成驱动器优化氮化镓性能?,第1张

  导读:

  将GaN FET与它们的驱动器集成在一起可以改进开关性能,并且能够简化基于GaN的功率级设计。

  氮化镓 (GaN) 晶体管开关速度比硅MOSFET快很多,从而有可能实现更低的开关损耗。然而,当压摆率很高时,特定的封装类型会限制GaN FET的开关性能。将GaN FET与驱动器集成在一个封装内可以减少寄生电感,并且优化开关性能。集成驱动器还可以实现保护功能。

  简介

  氮化镓 (GaN) 晶体管的开关性能要优于硅MOSFET,因为在同等导通电阻的情况下,氮化镓 (GaN) 晶体管的终端电容较低,并避免了体二极管所导致的反向恢复损耗。正是由于这些特性,GaN FET可以实现更高的开关频率,从而在保持合理开关损耗的同时,提升功率密度和瞬态性能。

  传统上,GaN器件被封装为分立式器件,并由单独的驱动器驱动,这是因为GaN器件和驱动器基于不同的处理技术,并且可能来自不同的厂商。每个封装将会有引入寄生电感的焊线和引线,如图1a所示。当以每纳秒数十到几百伏电压的高压摆率进行切换时,这些寄生电感会导致开关损耗、振铃和可靠性问题。

  将GaN晶体管与其驱动器集成在一起(图1b)可以消除共源电感,并且极大降低驱动器输出与GaN栅极之间的电感,以及驱动器接地中的电感。在这篇文章中,我们将研究由封装寄生效应所引发的问题和限制。在一个集成封装内对这些寄生效应进行优化可以减少该问题,并且以高于100V/ns的高压摆率实现出色的开关性能。

  如何用集成驱动器优化氮化镓性能?, 如何用集成驱动器优化氮化镓性能?,第2张

  图1. 由独立封装内的驱动器驱动的GaN器件 (a);一个集成GaN/驱动器封装 (b)。

  如何用集成驱动器优化氮化镓性能?, 如何用集成驱动器优化氮化镓性能?,第3张

  图2. 用于仿真的半桥电路的简化图

  仿真设置

  为了仿真寄生电感效应,我们使用了一个采用直接驱动配置的空乏型GaN半桥功率级(图2)。我们将半桥设置为一个降压转换器,总线电压480V,死区时间50ns时50%占空比(输出电压 [VOUT] = 240V),以及一个8A的电感器电流。这个GaN栅极在开关电压电平间被直接驱动。一个阻性驱动设定GaN器件的接通压摆率。一个电流源只会仿真一个与连续传导模式降压转换器内开关 (SW) 节点所连接的电感负载。

  共源电感

  高速开关中最重要的一个寄生要素是共源电感(图1a中的Lcs),它限制了器件汲取电流的压摆率。在传统的TO-220封装中,GaN源由焊线流至引线,而汲取电流与栅极电流都从这里流过。这个共源电感在汲取电流改变时调制栅源电压。共源电感会高于10nH(其中包括焊线和封装引线),从而限制了压摆率 (di/dt),并增加开关损耗。

  借助图1b中所示的集成式封装,驱动器接地直接焊接至GaN裸片的源焊垫。这个Kelvin源连接最大限度地缩短了电源环路与栅极环路共用的共源电感路径,从而使得器件能够以高很多的电流压摆率来开关。可以将一个Kelvin源引脚添加到一个分立式封装内;然而,这个额外的引脚会使其成为一个不标准的电源封装。Kelvin源引脚还必须从印刷电路板PCB) 引回至驱动器封装,从而增加了栅极环路电感。

  如何用集成驱动器优化氮化镓性能?, 如何用集成驱动器优化氮化镓性能?,第4张

  图3.不同共源电感情况下的高管接通:红色 = 0nH,绿色 = 1nH,蓝色 = 5nH。E_HS是高管器件的VDS和IDS在运行时间内的积分值(能耗)。

  图3显示的是高管开关接通时的硬开关波形。在共源电感为5nH时,由于源降级效应,压摆率减半。一个更低的压摆率会带来更长的转换时间,导致更高的交叉传导损耗,如能耗曲线图中所示。在共源电感为5nH时,能量损耗从53μJ增加至85μJ,增加了60%。假定开关频率为100kHz,功率损耗则会从从5.3W增加至8.5W。

  栅极环路电感

  栅极环路电感包括栅极电感和驱动器接地电感。栅极电感是驱动器输出与GaN栅极之间的电感。在使用独立封装时,栅极电感包括驱动器输出焊线 (Ldrv_out)、GaN栅极焊线 (Lg_gan) 和PCB迹线 (Lg_pcb),如图1a中所示。

  基于不同的封装尺寸,栅极电感会从紧凑型表面贴装封装(例如,四方扁平无引线封装)的几纳亨到有引线功率封装(例如TO-220)的10nH以上。如果驱动器与GaN FET集成在同一个引线框架内(图1b),GaN栅极直接焊接到驱动器输出上,这样可以将栅极电感减少至1nH以下。封装集成还可以极大地降低驱动器接地电感(从图1a中的Ldrv_gnd + Ls_pcb到图1b中的Lks)。

  降低栅极环路电感对于开关性能有着巨大影响,特别是在关闭期间,GaN栅极被一个电阻器下拉。这个电阻器的电阻值需要足够低,这样的话,器件才不会在开关期间由于漏极被拉高而又重新接通。这个电阻器与GaN器件的栅源电容和栅极环路电感组成了一个电感器-电阻器-电容器 (L-R-C) 槽路。方程式1中的Q品质因数表示为:

  如何用集成驱动器优化氮化镓性能?, 如何用集成驱动器优化氮化镓性能?,第5张

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/2708916.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-17
下一篇 2022-08-17

发表评论

登录后才能评论

评论列表(0条)

保存