什么叫立体电路(LDS)?

什么叫立体电路(LDS)?,第1张

Laser Direct Structuring(激光直接成型)工艺,简称LDS工艺,是由德国LPKF公司开发的一种注塑、激光加工与电镀工艺相结合的3D-MID(Three-dimensional molded interconnect device)生产技术,其原理是将普通的塑胶元件、电路板赋予电气互连功能,使塑料壳体、结构件除支撑、防护等功能外,与导电电路结合而产生的屏蔽、天线等功能,形成所谓3D-MID,适用于IC Substrate、HDIPCB、Lead Frame局部细线路制作。

简单的说,就是在注塑成型的塑料支架上,利用激光技术直接在支架上雕刻三维电路图案,然后电镀使图案形成三维金属电路,从而是塑料支架具有一定的电气性能。

此技术可应用在手机天线、汽车用电子电路、提款机外壳及医疗级助听器。目前最常见的是用于手机天线,一般常见内置手机天线,大多采用将金属片以塑胶热融方式固定在手机背壳或是将金属片直接贴在手机背壳上,LDS技术可将天线直接激光雕刻在手机外壳上,不仅避免内部手机金属干扰,更缩小手机体积。

LDS工艺主要有个四步骤

1、射出成型(Injection Molding)。此步骤在注塑机上将含有特殊化学添加剂(即所谓激光粉)的专用热塑性塑料注塑成型。

2、激光活化(Laser Activation)。此步骤透过激光光束活化,用激光使激光粉活化形成金属核,并且形成粗糙的表面,这些金属核为下一步电镀提供锚固点。

3、电镀(Metallization)。此为LDS制程中的关键步骤,在经过激光活化的塑胶表面进行化学镀(Electroless plating),形成5~8微米厚的金属电路,电镀的金属有铜、镍等,使塑料成为一个具备导电线路的MID元件。

4、组装(Assembling)。将上述完成的制品安装到产品上,必要时在电路上喷涂,以获得优良的外观。

LDS工艺的优点

1、打样成本低廉。

2、开发过程中修改方便。

3、塑胶元件电镀不影响天线的特性及稳定度。

4、产品体积再缩小,符合手机薄型发展趋势。

5、产量提升。

6、设计开发时间短。

7、可依客户需求进行客制化设计。

8、可用于激光钻孔。

9、与SMT制程相容。

目前国际上大力发展此此技术的天线厂商有Molex、Tyco、Amphenol、Foxconn、Pulse、启碁、Liard(莱尔德)、光宝(Liteon Perlos)、EMW等。其中Molex、Tyco、启碁均已大量出货。终端用户方面:诺基亚(Nokia)、三星(Samsung)、索爱(SEMC)、多普达(HTC)、RIM(黑莓)、LG、Moto都已经有机型使用。这种类型的天线目前主要用于智能机,现在业界很多人都认为这种天线会成为未来智能机天线的主流。

http://hi.baidu.com/hmchenyu/item/cc98ebe4e705ed285b7cfbeb

第一步:制作光刻掩膜版(Mask Reticle)芯片设计师将CPU的功能、结构设计图绘制完毕之后,就可将这张包含了CPU功能模块、电路系统等物理结构的“地图”绘制在“印刷母板”上,供批量生产了。这一步骤就是制作光刻掩膜版。光刻掩膜版:(又称光罩,简称掩膜版),是微纳加工技术常用的光刻工艺所使用的图形母版。由不透明的遮光薄膜在透明基板上形成掩膜图形结构,再通过曝光过程将图形信息转移到产品基片上。(*百度百科)将设计好的半导体电路”地图“绘制在由玻璃、石英基片、铬层和光刻胶等构成的掩膜版上光刻掩膜版的立体切片示意图第二步:晶圆覆膜准备从砂子到硅碇再到晶圆的制作过程点此查阅,这里不再赘述。将准备好的晶圆(Wafer)扔进光刻机之前,一般通过高温加热方式使其表面产生氧化膜,如使用二氧化硅(覆化)作为光导纤维,便于后续的光刻流程:第三步:在晶圆上“光刻”电路流程使用阿斯麦的“大杀器”,将紫外(或极紫外)光通过蔡司的镜片,照在前面准备好的集成电路掩膜版上,将设计师绘制好的“电路图”曝光(光刻)在晶圆上。(见动图):上述动图的工作切片层级关系如下:光刻机照射到部分的光阻会发生相应变化,一般使用显影液将曝光部分祛除而被光阻覆盖部分以外的氧化膜,则需要通过与气体反应祛除通过上述显影液、特殊气体祛除无用光阻之后,通过在晶圆表面注入离子激活晶体管使之工作,进而完成半导体元件的全部建设。做到这里可不算大功告成,这仅仅是错综复杂的集成电路大厦中,普通的一层“楼”而已。完整的集成电路系统中包含多层结构,晶体管、绝缘层、布线层等等:搭建迷宫大厦一般的复杂集成电路,需要多层结构因此,在完成一层光刻流程之后,需要把这一阶段制作好的晶圆用绝缘膜覆盖,然后重新涂上光阻,烧制下一层电路结构:多次重复上述 *** 作之后,芯片的多层结构搭建完毕(下图):如果上图看的不太明白,可以看看Intel的CPU芯片结构堆栈图:当然,我们可以通过高倍显微镜来观察光刻机“烧制”多层晶圆的堆叠情况:第四步:切蛋糕(晶圆切割)使用光刻机烧制完毕的晶圆,包含多个芯片(Die),通过一系列检测之后,将健康的个体们切割出来:从晶圆上将一个个“小方块”(芯片)切割出来第五步:芯片封装将切割后的芯片焊


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/dianzi/7175391.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-02
下一篇 2023-04-02

发表评论

登录后才能评论

评论列表(0条)

保存