参数方程二阶导数公式怎么理解?

参数方程二阶导数公式怎么理解?,第1张

一阶导数:dy/dx,那么二阶导数是在此基础上继续对x求导得到的,因此可以写成d(dy/dx)/dx我把它理解成,第一个d在分子上和dy合并,写成d2y,第一个dx下到分母处,和第二个dx合并,写成dx2所以最终是d2y/dx2

dy/dx表示对y求导,即f’(x)=dy/dx
而你的d2y/dx2实际上是d^2 y/dx^2,它表示对y进行二次求导
那么d^n y/dx^n表示对y进行n次求导
其中d/dx表示对某某进行求导运算
例如:y=sin x
那么 dy/dx=cos x
d^2 y/dx^2=-sin x
d^3 y/dx^3=-cos x

本题是函数的参数形式的导数问题。

参数方程中y对x的一阶导数是y对参数t的一阶导数与x对参数t的一阶导数的商。

则参数方程中y对x的二阶导数是y对x的一阶导数整体对参数t的导数再与x对参数t的一阶导数的商。

dy表示的是对y的微分,所以d(t/2)是求对t/2的微分。

详细解释步骤如下图:

不可以的。
求y对x的二阶导数仍然可以看作是参数方程确定的函数的求导方法,
因变量由y换作dy/dx,自变量还是x,
所以,
y对x的二阶导数 = dy/dx对t的导数 ÷ x对t的导数
dy/dt=1/(1+t^2)
dx/dt=1-2t/(1+t^2)=(1+t^2-2t)/(1+t^2)
所以,dy/dx=1/(1+t^2-2t)
d(dy/dx)/dt=[1/(1+t^2-2t)]'=-(2t-2)/(1+t^2-2t))^2
所以,
d2y/dx2=d(dy/dx)/dt ÷ dx/dt
=-(2t-2)/(1+t^2-2t))^2 ÷ (1+t^2-2t)/(1+t^2)
=(2-2t)(1+t^2)/(1+t^2-2t)^3

二阶导数,是原函数导数的导数,将原函数进行二次求导。
一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f‘(x)的导数叫做函数y=f(x)的二阶导数。
在图形上,它主要表现函数的凹凸性。
二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率。在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的。
定理:设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,
(1)若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的;
(2)若在(a,b)内f''(x)<0,则f(x)在[a,b]上的图形是凸的。
若在定义域内一阶导数为0,则该点是原函数定义域内的极值点或拐点。
如在定义域内二阶导数为0,则该点是一阶函数定义域内的极值点或拐点。
在一定情况下,二阶导数为0时的点,有可能为原函数的零点。
二阶导数一般是表示凹凸性,但是在国内的不同教材中有不同的叫法。比如在同济大学的教材中,如下图叫做上凹,而其他教材中叫做凹函数。

我们一般是得到y', y"这些导数,它们都是y对x的求导。
但对于参数方程来说,y对x不是显式的,从而不能够直接对x求导,但y可对参数直接求导,x也可对参数直接求导,两者求导后再相除,就相当于消去了dt, 从而结果就是y'了。只不过这个y'也是用参数表示的而已,但它已经变成是对x求导的了。
y'=dy/dx=(dy/dt)/(dx/dt)
这里相当于分子分母同时除以了dt

dx、dy表示微分,可以拆开,对于参数方程,x=f(t),y=g(t),

对于参数方程,先求微分:dx=f'(t)dt,dy=g'(t)dt,

dy/dx=g'(t)/f'(t),

而如果先消去参数,t=fˉ¹(x),y=g(fˉ¹(x))

dy/dx=g'(fˉ¹(x))fˉ¹'(x)=g'(fˉ¹(x))/f'(t)=g'(t)/f'(t),是一样的。

而二阶导数,注意是d²y/dx²,把dy/dx看成是新的“y”,x还是等于f(t),

所以应该这样:d(dy/dx)=[g'(t)/f'(t)]'dt=[g''(t)f'(t)-g'(t)f''(t)]/f'(t)² dt

dx=f'(t)dt

d²y/dx²=d(dy/dx)/dx=[g''(t)f'(t)-g'(t)f''(t)]/f'(t)³

函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f’(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。

扩展资料:

如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:

f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。

几何的直观解释:如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。

结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

参考资料来源:百度百科——二阶导数


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/12852415.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存