因子分析后如何进行聚类分析?

因子分析后如何进行聚类分析?,第1张

一、案例说明

1案例背景

研究短视频平台用户行为的分类情况,调查搜集了200份数据其中20项可分为品牌活动,品牌代言人,社会责任感,品牌赞助和购买意愿品牌五个维度。案例数据中还包括基本个体特征比如性别、年龄,学历,月收入等。以及短视频平台观看情况和消费情况。数据样本为200个。

2分析目的

想要根据短视频平台调查的数据进行聚类分析,由于分析项过多,所以先进行因子分析,将得到的因子得分进行聚类分析后进行命名,以及和其他基本个体特征比如性别进行交叉分析最终得到结论。

二、SPSSAU *** 作

因为案例的预设维度为5所以将分析项拖拽到右侧分析框后,下拉选择因子个数为5并勾选因子得分。

三、因子分析结果

1前提条件

KMO值与Bartlete球形检验

使用因子分析进行信息浓缩研究,首先分析研究数据是否适合进行因子分析,从上表可以看出:KMO值为0929,大于06,满足因子分析的前提要求,意味着数据可用于因子分析研究。以及数据通过Bartlett 球形度检验( p <005),说明研究数据适合进行因子分析。接下来查看分析项是否需要调整。

2因子与测量项之间的关系

因子分析进行因子浓缩时,通常会经历多个重复循环,删除不合理项,并且重复多次循环,最终得到合理结果。一般出现的情形我们分为两种,一种为“张冠李戴”,一种为“纠缠不清”,具体描述如下。

(1)“张冠李戴”

一般情况下,如果20项与5个因子之间的对应关系情况,与专业知识情况不符合,比如第一项本该属于第二个因子但是被划分到了第一个因子下面,此时则说明可能该项应该被删除处理,其出现了‘张冠李戴’现象。例如案例中的“购买意愿1”和“购买意愿4”。

(2)“纠缠不清”

除了“张冠李戴”现象,有时候会出现‘纠缠不清’现象,比如案例中的“品牌赞助4”可归属为因子2,同时也可归属到因子4,这种情况较为正常(称作‘纠缠不清’),需要结合实际情况处理即可,可将该项删除,也可不删除,这时,分析带有一定主观性。

Step1: 第一次分析

本例子中共20个分析项,此20个分析项共分为5个维度,因此在分析前可主动告诉SPSSAU,此20项是五个因子,否则SPSSAU会自动判断多少个因子(通常软件自动判断与实际情况有很大出入,所以建议主动设置因子个数)。如下图:

从上图中可以看出:

品牌活动1-4这4项,它们全部对应着因子1,因子载荷系数值均高于04,说明此4项应该同属于一个维度,即逻辑上品牌活动1-4这4项,并没有出现 “张冠李戴”现象。4个分析项值隶属于因子1一个维度也没有出现“纠缠不清”的情况。

品牌代言人1-4共4项,它们全部对应着因子1,但是品牌代言人3、品牌代言人4同时又属于因子3,属于“纠缠不清”,暂不处理。

“社会责任感1-4”共4项,此4项均对应着因子1或因子3,此3项并没有出现‘张冠李戴’问题,但是出现了“纠缠不清”。

“品牌赞助1-4”共4项,它们全部对应着因子2,“品牌赞助4”既对应因子2又对应因子4出现了“纠缠不清”,应该给予关注。

“购买意愿1-4”共四项,当他们对应因子4则“购买意愿1”出现“张冠李戴”若对应因子5则“购买意愿4”出现“张冠李戴”。

总结上述分析可知:“购买意愿1”或者“购买意愿4”这两项出现“张冠李戴”,应该首先将此两项中的一项删除;而其他出现“纠缠不清”现象的,暂时不处理(进行关注即可)。此次将“购买意愿1”进行删除后重新分析(将“购买意愿4”删除也是可以的,由研究者自己决定)。

Step2: 第二次分析

将“购买意愿1”这项删除后,进行第二次分析。结果如下:

从上图可知“品牌代言人3”、“品牌代言人4”出现‘张冠李戴’现象,应该删除,以及“品牌活动1-4”、“品牌代言人1-2”等出现‘纠缠不清’现象,暂不处理,但应该给予关注。总结可知:应该将“品牌代言人3”、“品牌代言人4”先删除后再次进行第3次分析。

Step3: 第三次分析

将“品牌代言人3”、“品牌代言人4”删除后再次分析结果如下:

从上图可知“品牌代言人1-2”可同时出现在因子1和因子5下面,但考虑到因子5当前仅余下2项,因而表示可以接受,以及“社会责任感1-4”是一样的,最终找出五个因子,它们分别与项之间的对应关系良好。因子分析结束。

3调整因子后的结果

(1)KMO 和 Bartlett 的检验

使用因子分析进行信息浓缩研究,首先分析研究数据是否适合进行因子分析,从上表可以看出:KMO值为0915,大于06,满足因子分析的前提要求,意味着数据可用于因子分析研究。以及数据通过Bartlett 球形度检验(p<005),说明研究数据适合进行因子分析。

(2)因子载荷系数表

从上图可知“品牌代言人1-2”可同时出现在因子1和因子5下面,但考虑到因子5当前仅余下2项,因而表示可以接受,以及“社会责任感1-4”是一样的,最终找出五个因子,它们分别与项之间的对应关系良好。分析项不需要进一步调整,接下来进行查看因子的提取个数以及信息浓缩情况。

4因子提取

(1)方差解释率

方差解释率 可以说明因子包含原数据信息的多少,方差解释率越大说明因子包含的信息越多。因子分析中,主要关注旋转后的数据部分。由上图可以显示17个指标中,五个因子方差解释率分别为26400%、21703%、19013%、15359%以及7087%,累积方差解释率由五项相加为89563%,累积方差解释率这个值没有固定标准,一般超过60%都可以接受。特征根对于因子的提取有什么作用,以下展开来说。

(2)特征根

特征根 一般是指标旋转前每个因子的贡献程度。此值的总和与项目数匹配,此值越大,代表因子贡献越大。当然因子分析通常需要综合自己的专业知识综合判断,即使是特征根值小于1,也一样可以提取因子。在进行因子分析时,研究者没有预设因子数,系统就会以特征根“大于1”为标准进行划分。因为此案例在分析前的预设因子个数为4所以也同样可以进行分析。除了特征根之外SPSSAU还提供了更加直观的碎石图帮助判断。

(3)碎石图

从图中可以看出,横轴表示指标数,纵轴表示特征根值,当提取前5个因子时,特征根值变化较明显,对解释原有变量的贡献较大;当提取5个以后的因子时,特征根变化也相对平稳,对原有变量贡献相对较小,由此可见提取前5个因子对原变量有的显著作用。碎石图仅辅助决策因子个数,如果由此图分析三个因子也是可以的。

此案例按专业知识来看提取5个因子,如果没有预设因子个数也可以默认让系统进行决策。提取后要观察因子的信息浓缩程度。

5信息浓缩

旋转后因子载荷系数表

旋转后因子载荷系数 可以用于判断因子与题项之间的对应关系,如果出现“张冠李戴”或者“纠缠不清”的情况需要关注,上述结果已经是处理后的结果,以及各个题项的共同度。如果某分析项对应的多个因子载荷系数绝对值均低于04,可考虑删除该项。上图分析中均大于04。所以不用删除调整。

从结果中可以看出,使用因子分析对14个项进行浓缩处理,浓缩为四个因子。因子与题项对应关系如下:

其中品牌活动1-4在因子1上有较高的载荷,说明因子1可以解释这几个分析项,它们主要反映了短视频平台进行品牌传播中的品牌活动;品牌赞助1-4在因子2上有较高的载荷,它们主要反映了短视频平台进行品牌传播中的品牌赞助活动;社会责任感1-4在因子3上有较高的载荷,它们主要反映了短视频平台进行品牌传播的社会责任等;购买意愿2-4在因子4上有较高的载荷,它们主要反映了短视频平台某品牌用户的购买意愿,品牌代言人1-2在因子5上有较高的载荷,它们主要反映了短视频平台某品牌用的代言人受众情况。

从上表可知:所有研究项对应的共同度值均高于04,意味着研究项和因子之间有着较强的关联性,因子可以有效的提取出信息。因为本篇案例是想得到 因子得分后进行聚类分析 进行命名得到有效结论用于公司决策。所以对于因子分析权重方面不进行赘述,如想了解,可以点击文末链接进行查看。

6因子得分

因子分析往往是预处理步骤,后续还需要结合具体研究目的进行分析,如回归分析、聚类分析等。此时,可能需要用到因子得分,返回分析页面勾选[因子得分]即可生成因子得分。因为本篇案例的研究目的是利用因子得分进行聚类分析,所以需要勾选[因子得分],以及对因子得分进行命名。

5个维度命名分别为品牌活动、品牌赞助、社会责任感、购买意愿以及品牌代言人如下:

接下来利用因子得分进行聚类分析,聚类分析将从,聚类基本情况,方差分析,聚类效果的图示化以及聚类命名来说明。

四、聚类分析结果

首先要查看数据分布是否均匀,一般来说,每个类别的样本比例应分布均匀,如果出现某一类占比过大或过小,可以考虑重新设置聚类类别个数。

1聚类基本情况

使用聚类分析对样本进行分类,使用Kmeans聚类分析方法,从上表可以看出:最终聚类得到3类群体,此3类群体的占比分别是4250%, 1450%, 4300%。整体来看,3类人群分布较为均匀,整体说明聚类效果较好。

2方差分析

聚类类别与聚类分析项进行交叉分析,如果呈现出显著性(p<005),意味着聚类得到的不同类别样本,在相同指标上有明显的差异。这说明参与聚类分析的5个变量能够很好的区分类别,类间差异足够大,其中p值越小说明明类别之间的差异越大。

对不同类别进行均值比较除了可以查看方差分析还可以进行查看 聚类项重要性对比。

如果某个指标重要性较低,考虑移出该指标。从上述结果看,所有研究项均呈现出显著性,说明不同类别之间的特征有明显的区别,聚类的效果较好。

3聚类效果的图示化

可通过散点图直观展示聚类效果,使用任意两个聚类指标进行散点图绘制(可视化模块里面的散点图),并且在‘颜色区分(定类)[可选]框中放入‘聚类类别’项,以查看不同类别时,两两指标的散点效果。

从图中可以发现各个类别之间有明显的区别,聚类的效果较好。其中发现第一个类别品牌活动与品牌代言人都比较大,建议研究时可以更加关注。

4聚类类别命名

研究者也可以观察折线图趋势进行命名。参考如下:

通过上图可知,第一类人群在每个指标上的得分都比较高,可以命名为旅“品牌发烧友”。第二类人群在社会责任感、购买意愿得分较高,品牌代言人、品牌赞助得分较低,品牌活动介于二者之间,可命名为“品牌从众友”。第三类各项得分都较低,命名为“品牌冷淡者”。

将三类命名:SPSSAU‘数据处理’- ‘数据标签’。

5聚类后的差异分析

得到聚类类别之后,接着需要对比不同类别群体的差异性;如在“性别”、“年龄”上的差异性。最常见与个人信息情况做交叉分析,可以得到不同类型的人群分布情况便于结合不同群体提出针对性的建议措施。本次案例将聚类类别与“年龄”进行交叉分析,如下进行阐述。

从上表可知,利用卡方检验(交叉分析)去研究年龄对于聚类类别共1项的差异关系,从上表可以看出:不同年龄样本对于聚类类别共1项呈现出显著性(p<005),意味着不同年龄样本对于聚类类别共1项均呈现出差异性,具体建议可结合括号内百分比进行差异对比。

年龄对于聚类类别呈现出005水平显著性(chi=14335, p=0026<005),通过百分比对比差异可知,26-30岁选择品牌发烧友的比例4921%,会明显高于平均水平4250%。20-25岁选择品牌从众者的比例2623%,会明显高于平均水平1450%。36-40岁选择品牌冷淡者的比例5333%,会明显高于平均水平4300%。31-35岁选择品牌冷淡者的比例4918%,会明显高于平均水平4300%。可以根据数据结果进一步决策。也可以和“性别”、“学历”等进行交叉分析。这里不进行过多描述。

五、其它

1聚类中心

整体说明聚类效果较好

上表为经过迭代后类中心的变化,数据是经过标准化后的,至于数据是否需要标准化,聚类算法是根据距离进行判断类别,因此一般需要在聚类之前进行标准化处理,SPSSAU 默认 是选中进行标准化处理。数据标准化之后,数据的相对大小意义还在(比如数字越大GDP越高),但是实际意义消失了。

2SSE

对于聚类中心的 SSE 指标说明如下:

在进行Kmeans聚类分析时SPSSAU默认输出误差平方和SSE值,该值可用于测量各点与中心点的距离情况,理论上是希望越小越好,而且如果同样的数据,聚类类别越多则SSE值会越小(但聚类类别过多则不便于分析)。SSE指标可用于辅助判断聚类类别个数,建议在不同聚类类别数量情况下记录下SSE值,然后分析SSE值的减少幅度情况,如果发现比如从2个聚类到3个6类别时SSE值减少幅度明显很大,那么此时选择3个聚类类别较好。比如该案例若聚类数为2,此时SSE值为872226,但是当聚类数为3时此时SSE值为779077,发现SSE减少幅度较大。所以可以看出选择3个聚类类别较好。

六、总结

本篇案例结合了线性回归与聚类分析,由于分析项过多,先进行因子分析,通过因子分析发现存在“张冠李戴”的情况,需要调整因子,调整因子后分析因子提取、信息浓缩情况,并且得到因子得分,进一步进行聚类分析,发现初步结果较好,将结果进行图示化展示,可以看出各个类别之间有明显的区别,将类别命名后,进行交叉分析,发现类别与年龄之间存在差异,并且具体描述,对公司或者平台对后续决策中提供有效结论。

1 因子分析模型
因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。
因子分析的基本思想:
把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子
因子分析模型描述如下:
(1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。
(2)F = (F1,F2,…,Fm)¢ (m<p)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F) =I,即向量的各分量是相互独立的。
(3)e = (e1,e2,…,ep)¢与F相互独立,且E(e)=0, e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型:
x1 = a11F1+ a12F2 +…+a1mFm + e1
x2 = a21F1+a22F2 +…+a2mFm + e2
………
xp = ap1F1+ ap2F2 +…+apmFm + ep
称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型。
其矩阵形式为: x =AF + e
其中:
x=,A=,F=,e=
这里,
(1)m £ p;
(2)Cov(F,e)=0,即F和e是不相关的;
(3)D(F) = Im ,即F1,F2,…,Fm不相关且方差均为1;
D(e)=,即e1,e2,…,ep不相关,且方差不同。
我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e 称为X的特殊因子。
A = (aij),aij为因子载荷。数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性。
2 模型的统计意义
模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。公共因子的含义,必须结合具体问题的实际意义而定。e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。模型中载荷矩阵A中的元素(aij)是为因子载荷。因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度。可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(|aij|£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大。为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献。
因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度。它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响。hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm的共同依赖程度大。
将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献。gj2就表示第j个公共因子Fj对于x的每一分量xi(i= 1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标。gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大。如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子。
3 因子旋转
建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析。如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子。
旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法。最常用的方法是最大方差正交旋转法(Varimax)。进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小。因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转。常用的斜交旋转方法有Promax法等。
4因子得分
因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价。例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等。这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分。
设公共因子F由变量x表示的线性组合为:
Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m
该式称为因子得分函数,由它来计算每个样品的公共因子得分。若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究。
但因子得分函数中方程的个数m小于变量的个数p,所以并不能精确计算出因子得分,只能对因子得分进行估计。估计因子得分的方法较多,常用的有回归估计法,Bartlett估计法,Thomson估计法。
(1)回归估计法
F = X b = X (X ¢X)-1A¢ = XR-1A¢ (这里R为相关阵,且R = X ¢X )。
(2)Bartlett估计法
Bartlett估计因子得分可由最小二乘法或极大似然法导出。
F = [(W-1/2A)¢ W-1/2A]-1(W-1/2A)¢ W-1/2X = (A¢W-1A)-1A¢W-1X
(3)Thomson估计法
在回归估计法中,实际上是忽略特殊因子的作用,取R = X ¢X,若考虑特殊因子的作用,此时R = X ¢X+W,于是有:
F = XR-1A¢ = X (X ¢X+W)-1A¢
这就是Thomson估计的因子得分,使用矩阵求逆算法(参考线性代数文献)可以将其转换为:
F = XR-1A¢ = X (I+A¢W-1A)-1W-1A¢
5 因子分析的步骤
因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。
(i)因子分析常常有以下四个基本步骤:
(1)确认待分析的原变量是否适合作因子分析。
(2)构造因子变量。
(3)利用旋转方法使因子变量更具有可解释性。
(4)计算因子变量得分。
(ii)因子分析的计算过程:
(1)将原始数据标准化,以消除变量间在数量级和量纲上的不同。
(2)求标准化数据的相关矩阵;
(3)求相关矩阵的特征值和特征向量;
(4)计算方差贡献率与累积方差贡献率;
(5)确定因子:
设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;
(6)因子旋转:
若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。
(7)用原指标的线性组合来求各因子得分:
采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。
(8)综合得分
以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。
F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )
此处wi为旋转前或旋转后因子的方差贡献率。
(9)得分排序:利用综合得分可以得到得分名次。
在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:
· 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。
· 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。
· 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。
如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。
Rotated Component Matrix,就是经转轴后的因子负荷矩阵,
当你设置了因子转轴后,便会产生这结果。
转轴的是要得到清晰的负荷形式,以便研究者进行因子解释及命名。
SPSS的Factor Analysis对话框中,有个Rotation钮,点击便会d出Rotation对话框,
其中有5种因子旋转方法可选择:
1最大变异法(Varimax):使负荷量的变异数在因子内最大,亦即,使每个因子上具有最高载荷的变量数最少。
2四次方最大值法(Quartimax):使负荷量的变异数在变项内最大,亦即,使每个变量中需要解释的因子数最少。
3相等最大值法(Equamax):综合前两者,使负荷量的变异数在因素内与变项内同时最大。
4直接斜交转轴法(Direct Oblimin):使因素负荷量的差积(cross-products)最小化。
5Promax 转轴法:将直交转轴(varimax)的结果再进行有相关的斜交转轴。因子负荷量取2,4,6次方以产生接近0但不为0的值,藉以找出因子间的相关,但仍保有最简化因素的特性。
上述前三者属於「直交(正交)转轴法」(Orthogonal Rotations),在直交转轴法中,因子与因子之间没有相关,因子轴之间的夹角等於90 度。后两者属於「斜交转轴」(oblique rotations),表示因子与因子之间彼此有某种程度的相关,因素轴之间的夹角不是90度。
直交转轴法的优点是因子之间提供的讯息不会重叠,受访者在某一个因子的分數与在其他因子的分數,彼此独立互不相关;缺点是研究迫使因素之间不相关,但这种情况在实际的情境中往往并不常存在。至於使用何种转轴方式,须视乎研究题材、研究目的及相关理论,由研究者自行设定。
在根据结果解释因子时,除了要看因子负荷矩阵中,因子对哪些变量呈高负荷,对哪些变量呈低负荷,还须留意之前所用的转轴法代表的意义。
2,主成分分析(principal component analysis)
将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。又称主分量分析。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。主成分分析首先是由K皮尔森对非随机变量引入的,尔后H霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。
(1)主成分分析的原理及基本思想。
原理:设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。
基本思想:主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。
(2)步骤
Fp=a1mZX1+a2mZX2+……+apmZXp
其中a1i, a2i, ……,api(i=1,……,m)为X的协方差阵∑的特征值多对应的特征向量,ZX1, ZX2, ……, ZXp是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响[注:本文指的数据标准化是指Z标准化]。
A=(aij)p×m=(a1,a2,…am,),Rai=λiai,R为相关系数矩阵,λi、ai是相应的特征值和单位特征向量,λ1≥λ2≥…≥λp≥0 。
进行主成分分析主要步骤如下:
1 指标数据标准化(SPSS软件自动执行);
2 指标之间的相关性判定;
3 确定主成分个数m;
4 主成分Fi表达式;
5 主成分Fi命名;
选用以上两种方法时的注意事项如下:
1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。
4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。
5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。
总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)。
(1)了解如何通过SPSS因子分析得出主成分分析结果。首先,选择SPSS中Analyze-Data Reduction-Factor…,在Extraction…对话框中选择主成分方法提取因子,选择好因子提取个数标准后点确定完成因子分析。打开输出结果窗口后找到Total Variance Explained表和Component Matrix表。将Component Matrix表中第一列数据分别除以Total Variance Explained表中第一特征根值的开方得到第一主成分表达式系数,用类似方法得到其它主成分表达式。打开数据窗口,点击菜单项的Analyze-Descriptive Statistics-Descriptives…,在打开的新窗口下方构选Save standardized values as variables,选定左边要分析的变量。点击Options,只构选Means,点确定后既得待分析变量的标准化新变量。
选择菜单项Transform-Compute…,在Target Variable中输入:Z1(主成分变量名,可以自己定义),在Numeric Expression中输入例如:0412(刚才主成分表达式中的系数)Z人口数(标准化过的新变量名)+0212Z第一产业产值+…,点确定即得到主成分得分。通过对主成分得分的排序即可进行各个个案的综合评价。很显然,这里的过程分为四个步骤:
Ⅰ选主成分方法提取因子进行因子分析。
Ⅱ计算主成分表达式系数。
Ⅲ标准化数据。
Ⅳ计算主成分得分。
我们的程序也将依该思路展开开发。
(2)对为何要将Component Matrix表数据除以特征根开方的解释
我们学过主成分分析和因子分析后不难发现,原来因子分析时的因子载荷矩阵就是主成分分析特征向量矩阵乘以对应特征根开方值的对角阵。而Component Matrix表输出的恰是因子载荷矩阵,所以求主成分特征向量自然是上面描述的逆运算。
成功启动程序后选定分析变量和主成分提取方法即可在数据窗口输出得分和在OUTPUT窗口输出主成分表达式。
3,聚类分析(Cluster Analysis)
聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术 。
在市场研究领域,聚类分析主要应用方面是帮助我们寻找目标消费群体,运用这项研究技术,我们可以划分出产品的细分市场,并且可以描述出各细分市场的人群特征,以便于客户可以有针对性的对目标消费群体施加影响,合理地开展工作。
4判别分析(Discriminatory Analysis)
判别分析(Discriminatory Analysis)的任务是根据已掌握的1批分类明确的样品,建立较好的判别函数,使产生错判的事例最少,进而对给定的1个新样品,判断它来自哪个总体。根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法。
费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度;所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。它是对先验概率修正后的结果。
距离判别思想是根据各样品与各母体之间的距离远近作出判别。即根据资料建立关于各母体的距离判别函数式,将各样品数据逐一代入计算,得出各样品与各母体之间的距离值,判样品属于距离值最小的那个母体。
5对应分析(Correspondence Analysis)
对应分析是一种用来研究变量与变量之间联系紧密程度的研究技术。
运用这种研究技术,我们可以获取有关消费者对产品品牌定位方面的图形,从而帮助您及时调整营销策略,以便使产品品牌在消费者中能树立起正确的形象。
这种研究技术还可以用于检验广告或市场推广活动的效果,我们可以通过对比广告播出前或市场推广活动前与广告播出后或市场推广活动后消费者对产品的不同认知图来看出广告或市场推广活动是否成功的向消费者传达了需要传达的信息。

因子分析的计算过程能否手算得出?
181 人关注0 条评论

写回答
查看全部 16 个回答

写回答

伍六一
光荣是在于平淡 艰巨是在于漫长
谢邀,对于此问题也不甚了解,只能粗略回答一下。
1因子分析的基本步骤
(1)确认待分析的原始变量是否适合作因子分析;
(2)构造因子变量;
(3)利用旋转方法使因子变量具有可解释性;
(4)计算每个样本的因子变量得分。
2因子分析的数学模型
3因素分析的主要方式
围绕浓缩原有变量提取因子的核心目标,因子分析主要涉及以下五大基本步骤:
1、因子分析的前提条件
由于因子分析的主要任务之一是对原有变量进行浓缩,即将原有变量中的信息重叠部分提取和综合成因子,进而最终实现减少变量个数的目的。因此它要求原有变量之间应存在较强的相关关系。否则,如果原有变量相互独立,相关程度很低,不存在信息重叠,它们不可能有共同因子,那么也就无法将其综合和浓缩,也就无需进行因子分析。本步骤正是希望通过各种方法分析原有变量是否存在相关关系,是否适合进行因子分析。
SPSS提供了四个统计量可帮助判断观测数据是否适合作因子分析:
(1)计算相关系数矩阵Correlation Matrix
在进行提取因子等分析步骤之前,应对相关矩阵进行检验,如果相关矩阵中的大部分相关系数小于03,则不适合作因子分析;当原始变量个数较多时,所输出的相关系数矩阵特别大,观察起来不是很方便,所以一般不会采用此方法或即使采用了此方法,也不方便在结果汇报中给出原始分析报表。
(2)计算反映象相关矩阵Anti-image correlation matrix
反映象矩阵重要包括负的协方差和负的偏相关系数。偏相关系数是在控制了其他变量对两变量影响的条件下计算出来的净相关系数。如果原有变量之间确实存在较强的相互重叠以及传递影响,也就是说,如果原有变量中确实能够提取出公共因子,那么在控制了这些影响后的偏相关系数必然很小。
反映象相关矩阵的对角线上的元素为某变量的MSA(Measure of Sample Adequacy)统计量,其数学定义为:
观察反映象相关矩阵,如果反映象相关矩阵中除主对角元素外,其他大多数元素的绝对值均小,对角线上元素的值越接近1,则说明这些变量的相关性较强,适合进行因子分析。与(1)中最后所述理由相同,一般少采用此方法。
(3)巴特利特球度检验Bartlett test of sphericity
Bartlett球体检验的目的是检验相关矩阵是否是单位矩阵(identity matrix),如果是单位矩阵,则认为因子模型不合适。Bartlett球体检验的虚无假设为相关矩阵是单位阵,如果不能拒绝该假设的话,就表明数据不适合用于因子分析。一般说来,显著水平值越小(<005)表明原始变量之间越可能存在有意义的关系,如果显著性水平很大(如010以上)可能表明数据不适宜于因子分析。
(4)KMO(Kaiser-Meyer-Oklin Measure of Smapling Adequacy)
KMO是Kaiser-Meyer-Olkin的取样适当性量数。KMO测度的值越高(接近10时),表明变量间的共同因子越多,研究数据适合用因子分析。通常按以下标准解释该指标值的大小:KMO值达到09以上为非常好,08~09为好,07~08为一般,06~07为差,05~06为很差。如果KMO测度的值低于05时,表明样本偏小,需要扩大样本。
综上所述,经常采用的方法为巴特利特球度检验Bartlett test of sphericity和KMO(Kaiser-Meyer-Oklin Measure of Smapling Adequacy)。
2、抽取共同因子,确定因子的数目和求因子解的方法
将原有变量综合成少数几个因子是因子分析的核心内容。本步骤正是研究如何在样本数据的基础上提取和综合因子。决定因素抽取的方法,有“主成份分析法”(principal components analysis)、主轴法、一般化最小平方法、未加权最小平方法、最大概似法、Alpha因素抽取法与映象因素抽取法等。使用者最常使用的是主成份分析法与主轴法,其中,又以主成份分析法使用最为普遍,在SPSS使用手册中,也建议研究者多采用主成份分析法来估计因素负荷量。所谓主成份分析法,就是以较少的成份解释原始变量方差的较大部分。进行主成份分析时,先要将每个变量的数值转换成标准值。主成份分析就是用多个变量组成一个多维空间,然后在空间内投射直线以解释最大的方差,所得的直线就是共同因子,该直线最能代表各个变量的性质,而在此直线上的数值所构成的一个变量就是第一个共同因子,或称第一因子。但是在空间内还有剩余的方差,所以需要投射第二条直线来解释方差。这时,还要依据第二条准则,即投射的第二条直线与第一条直线成直交关系,意为代表不同的方面。第二条直线上的数值所构成的一个变量,称为第二因子。依据该原理可以求出第三、第四或更多的因子。原则上,因子的数目与原始变量的数目相同,但抽取了主要的因子之后,如果剩余的方差很小,就可以放弃其余的因子,以达到简化数据的目的。
因子数目的确定没有精确的定量方法,但常用的方法是借助两个准则来确定因子的个数。一是特征值(eigenvalue)准则,二是碎石图检验(scree test)准则。特征值准则就是选取特征值大于或等于1的主成份作为初始因子,而放弃特征值小于1的主成份。因为每个变量的方差为1,该准则认为每个保留下来的因子至少应该能解释一个变量的方差,否则达不到精简数据的目的。碎石检验准则是根据因子被提取的顺序绘出特征值随因子个数变化的散点图,根据图的形状来判断因子的个数。散点曲线的特点是由高到低,先陡后平,最后几乎成一条直线。曲线开始变平的前一个点被认为是提取的最大因子数。后面的散点类似于山脚下的碎石,可舍弃而不会丢失很多信息。
3、使因子更具有命名可解释性
通常最初因素抽取后,对因素无法作有效的解释。这时往往需要进行因子旋转(rotation),通过坐标变换使因子解的意义更容易解释。转轴的目的在于改变题项在各因素负荷量的大小,转轴时根据题项与因素结构关系的密切程度,调整各因素负荷量的大小,转轴后,使得变量在每个因素的负荷量不是变大(接近1)就是变得更小(接近0),而非转轴前在每个因素的负荷量大小均差不多,这就使对共同因子的命名和解释变量变得更容易。转轴后,每个共同因素的特征值会改变,但每个变量的共同性不会改变。常用的转轴方法,有最大变异法(Varimax)、四次方最大值法(Quartimax)、相等最大值法(Equamax)、直接斜交转轴法(Direct Oblimin)、Promax转轴法,其中前三者属于“直交转轴法”(orthogonal rotations),在直交转轴法中,因素(成份)与因素(成份)间没有相关,亦即其相关为0,因素轴间夹角为90°;而后二者(直接斜交转轴、Promax转轴法)属“斜交转轴”(oblique rotations),采用斜交转轴法,表示因素与因素间彼此有某种程度的相关,亦即因素轴间的夹角不是90°。
直交转轴法的优点是因素间提供的信息不会重叠,观察体在某一个因素的分数与在其它因素的分数,彼此独立不相关;而其缺点是研究者迫使因素间不相关,但在实际情境中,它们彼此有相关的可能性很高。因而直交转轴方法偏向较多人为 *** 控方式,不需要正确响应现实世界中自然发生的事件(Bryman&Cramer,1997)。
所谓直交旋转法(orthogonal rotations),就是要求各个因子在旋转时都要保持直角关系,即不相关。在直交旋转时,每个变量的共同性(


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/12957164.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存