容器安全-Capabilities

容器安全-Capabilities,第1张

Linux内核中的Capabilities特性用于划分特权集,以便进程可以只分配“执行特定功能”的特权。

在引入此特性前,如果进程需要使用网络,则必须使用root来运行,通常是sudo或者添加suid,那么普通用户在使用ping时,ping就可以运行任何特权。引入Capabilities特性后,可以通过给ping应用添加CAP_NET_RAW特权集,使其具有使用网络的特权集,而不具备其他特权集。缺省ping具有cap_net_admin和cap_net_raw特权集

在 Linux 中的 Capabilities 是通过 extended attributes 中的 security 命名空间实现的,selinux也是一样

可以通过查看进程/proc/xxxx/status,来检查进程的特权集,并通过capsh来解码得到具体的特权集。

使用capsh可以翻译出每个BIT的含义,3=0011表示2个bit,f=1111表示4个bit,一共2+4+4+4+4+4+4+4+4+4=38bit,从后先前,每个bit代表一种特权,一共38种特权集.

Docker 也支持 Capabilities ,在运行容器的时候可以通过指定 --privileded 参数来开启容器的所有CAP,可以通过--cap-add 和 --cap-drop 这两个参数来调整.

后台运行一个容器busybox,通过查看进程,可以发现缺省容器只有14种特权集

由于容器缺省不支持cap_sys_nice,所以无法改变nice值

通过--cap-add给容器增加cap_sys_nice特权集

使用--privileged可以获得所有特权集

使用--cap-add=ALL也可以获得所有特权集

如果使用--cap-drop=ALL --cap-add=cap_net_bind_service,则只有cap_net_bind_service 特权集.--cap-drop和--cap-add是在基础的14重特权集的基础上先减后加的

在k8s中使用Capabilities,与container基本一致

为了执行权限检查,传统的 UNIX 实现区分两种类型的进程:特权进程(其有效用户 ID 为0,称为超级用户或 root),和非特权用户(其有效 UID 非0)。特权进程绕过所有的内核权限检查,而非特权进程受基于进程的认证信息(通常是:有效 UID,有效 GID,和补充组列表)的完整权限检查的支配。

自内核 2.2 版本开始,Linux 将传统上与超级用户关联的特权分为几个单元,称为 capabilities (权能),它们可以被独立的启用或禁用。权能是每个线程的属性。

下面的列表展示了 Linux 上实现的权能,以及每种权能允许的 *** 作或行为:

权能的完整实现需要:

在内核 2.6.24 之前,只有前两个要求能够满足;自内核 2.6.24 开始,所有三个要求都能满足。

每个线程具有三个包含零个或多个上面的权能的权能集合:

A child created via fork(2) inherits copies of its parent's capability sets. See below for a discussion of the treatment of capabilities during execve(2).

Using capset(2), a thread may manipulate its own capability sets (see below).

Since Linux 3.2, the file /proc/sys/kernel/cap_last_cap exposes the numerical value of the highest capability supported by the running kernelthis can be used to determine the highest bit that may be set in a capability set.

Since kernel 2.6.24, the kernel supports associating capability sets with an executable file using setcap(8). The file capability sets are stored in an extended attribute (see setxattr(2)) named security.capability. Writing to this extended attribute requires the CAP_SETFCAP capability. The file capability sets, in conjunction with the capability sets of the thread, determine the capabilities of a thread after an execve(2).

The three file capability sets are:

During an execve(2), the kernel calculates the new capabilities of the process using the following algorithm:

其中:

A privileged file is one that has capabilities or has the set-user-ID or set-group-ID bit set.

In order to provide an all-powerful root using capability sets, during an execve(2):

The upshot of the above rules, combined with the capabilities transformations described above, is that when a process execve(2)s a set-user-ID-root program, or when a process with an effective UID of 0 execve(2)s a program, it gains all capabilities in its permitted and effective capability sets, except those masked out by the capability bounding set. This provides semantics that are the same as those provided by traditional UNIX systems.

The capability bounding set is a security mechanism that can be used to limit the capabilities that can be gained during an execve(2). The bounding set is used in the following ways:

Note that the bounding set masks the file permitted capabilities, but not the inherited capabilities. If a thread maintains a capability in its inherited set that is not in its bounding set, then it can still gain that capability in its permitted set by executing a file that has the capability in its inherited set.

Depending on the kernel version, the capability bounding set is either a system-wide attribute, or a per-process attribute.

In kernels before 2.6.25, the capability bounding set is a system-wide attribute that affects all threads on the system. The bounding set is accessible via the file /proc/sys/kernel/cap-bound. (Confusingly, this bit mask parameter is expressed as a signed decimal number in /proc/sys/kernel/capbound.)

Only the init process may set capabilities in the capability bounding setother than that, the superuser (more precisely: programs with the CAP_SYS_MODULE capability) may only clear capabilities from this set.

On a standard system the capability bounding set always masks out the CAP_SETPCAP capability. To remove this restriction (dangerous!), modify the definition of CAP_INIT_EFF_SET in include/linux/capability.h and rebuild the kernel.

The system-wide capability bounding set feature was added to Linux starting with kernel version 2.2.11.

From Linux 2.6.25, the capability bounding set is a per-thread attribute. (There is no longer a systemwide capability bounding set.)

The bounding set is inherited at fork(2) from the thread's parent, and is preserved across an execve(2).

A thread may remove capabilities from its capability bounding set using the prctl(2) PR_CAPBSET_DROP operation, provided it has the CAP_SETPCAP capability. Once a capability has been dropped from the bounding set, it cannot be restored to that set. A thread can determine if a capability is in its bounding set using the prctl(2) PR_CAPBSET_READ operation.

Removing capabilities from the bounding set is supported only if file capabilities are compiled into the kernel. In kernels before Linux 2.6.33, file capabilities were an optional feature configurable via the CONFIG_SECURITY_FILE_CAPABILITIES option. Since Linux 2.6.33, the configuration option has been removed and file capabilities are always part of the kernel. When file capabilities are compiled into the kernel, the init process (the ancestor of all processes) begins with a full bounding set. If file capabilities are not compiled into the kernel, then init begins with a full bounding set minus CAP_SETPCAP, because this capability has a different meaning when there are no file capabilities.

Removing a capability from the bounding set does not remove it from the thread's inherited set. However it does prevent the capability from being added back into the thread's inherited set in the future.

To preserve the traditional semantics for transitions between 0 and nonzero user IDs, the kernel makes the following changes to a thread's capability sets on changes to the thread's real, effective, saved set, and filesystem user IDs (using setuid(2), setresuid(2), or similar):

If a thread that has a 0 value for one or more of its user IDs wants to prevent its permitted capability set being cleared when it resets all of its user IDs to nonzero values, it can do so using the prctl(2) PR_SET_KEEPCAPS operation or the SECBIT_KEEP_CAPS securebits flag described below.

A thread can retrieve and change its capability sets using the capget(2) and capset(2) system calls. However, the use of cap_get_proc(3) and cap_set_proc(3), both provided in the libcap package, is preferred for this purpose. The following rules govern changes to the thread capability sets:

Starting with kernel 2.6.26, and with a kernel in which file capabilities are enabled, Linux implements a set of per-thread securebits flags that can be used to disable special handling of capabilities for UID 0 (root). These flags are as follows:

Each of the above "base" flags has a companion "locked" flag. Setting any of the "locked" flags is irreversible, and has the effect of preventing further changes to the corresponding "base" flag. The locked flags are: SECBIT_KEEP_CAPS_LOCKED, SECBIT_NO_SETUID_FIXUP_LOCKED, SECBIT_NOROOT_LOCKED, and SECBIT_NO_CAP_AMBIENT_RAISE.

The securebits flags can be modified and retrieved using the prctl(2) PR_SET_SECUREBITS and PR_GET_SECUREBITS operations. The CAP_SETPCAP capability is required to modify the flags.

The securebits flags are inherited by child processes. During an execve(2), all of the flags are preserved, except SECBIT_KEEP_CAPS which is always cleared.

An application can use the following call to lock itself, and all of its descendants, into an environment where the only way of gaining capabilities is by executing a program with associated file capabilities:

For a discussion of the interaction of capabilities and user namespaces, see user_namespaces(7).

No standards govern capabilities, but the Linux capability implementation is based on the withdrawn POSIX.1e draft standardsee ⟨ http://wt.tuxomania.net/publications/posix.1e/ ⟩.

From kernel 2.5.27 to kernel 2.6.26, capabilities were an optional kernel component, and can be enabled/disabled via the CONFIG_SECURITY_CAPABILITIES kernel configuration option.

The /proc/PID/task/TID/status file can be used to view the capability sets of a thread. The /proc/PID/status file shows the capability sets of a process's main thread. Before Linux 3.8, nonexistent capabilities were shown as being enabled (1) in these sets. Since Linux 3.8, all nonexistent capabilities (above CAP_LAST_CAP) are shown as disabled (0).

The libcap package provides a suite of routines for setting and getting capabilities that is more comfortable and less likely to change than the interface provided by capset(2) and capget(2). This package also provides the setcap(8) and getcap(8) programs. It can be found at ⟨ http://www.kernel.org/pub/linux/libs/security/linux-privs ⟩.

Before kernel 2.6.24, and from kernel 2.6.24 to kernel 2.6.32 if file capabilities are not enabled, a thread with the CAP_SETPCAP capability can manipulate the capabilities of threads other than itself. However, this is only theoretically possible, since no thread ever has CAP_SETPCAP in either of these cases:

capsh(1), setpriv(1), prctl(2), setfsuid(2), cap_clear(3), cap_copy_ext(3), cap_from_text(3), cap_get_file(3), cap_get_proc(3), cap_init(3), capgetp(3), capsetp(3), libcap(3), credentials(7), user_namespaces(7), pthreads(7), getcap(8), setcap(8)

include/linux/capability.h in the Linux kernel source tree

This page is part of release 4.04 of the Linux man-pages project. A description of the project, information about reporting bugs, and the latest version of this page, can be found at http://www.kernel.org/doc/man-pages/ .

在压缩文件cap.tar.gz中,有一个文件是update.cud,整条命令的意思是将cap.tar.gz压缩文件中的update.cud文件解压到/tmp目录下。 tar:tar命令 xzf:x是解压释放;z代表gz格式;f代表file -C:后跟目录,解压到这个目录下


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/7615289.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-07
下一篇 2023-04-07

发表评论

登录后才能评论

评论列表(0条)

保存