第一步:首先对模型整体情况进行分析
包括模型拟合情况(R²),是否通过F检验等。
第二步:分析X的显著性
分析X的显著性(P值),如果呈现出显著性,则说明X对Y有影响关系。如果不显著,则应剔除该变量。
第三步:判断X对Y的影响关系方向及影响程度
结合回归系数B值,对比分析X对Y的影响程度。B值为正数则说明X对Y有正向影响,为负数则说明有负向影响。
第四步:写出模型公式
第五步:对分析进行总结
SPSSAU也会提供智能分析建议,方便分析人员快速得出分析结果。
关注
当影响因变量的因素是多个时候,这种一个变量同时与多个变量的回归问题就是多元回归,分为:多元线性回归和多元非线性回归。这里直说多元线性回归。对比一元线性回归:
11多元回归模型:
y=β0+β1x1+β2x2+…+βkxk+ε
y=β0+β1x1+β2x2+…+βkxk+ε
12多元回归方程
E(y)=β0+β1x1+β2x2+…+βkxk
E(y)=β0+β1x1+β2x2+…+βkxk
13估计的多元回归方程
y^=β0^+β1^x1+β2^x2+…+βk^xk
y^=β0^+β1^x1+β2^x2+…+βk^xk
21对参数的最小二乘法估计:
和一元线性回归中提到的最小二乘法估计一样、这不过这里的求导变量多了点、原理是一样的、这里需要借助计算机求导、就不写了。
3 回归方程的拟合优度:
31 多重判定系数:(Multiple coefficient of determination)
R2=SSRSST=1−SSESST
R2=SSRSST=1−SSESST
注解:
(1 ) 对于多重判定系数有一点特别重要的需要说明:自变量个数的增加将影响到因变量中被估计的回归方程所解释的变量数量。当增加自变量时,会使预测误差变得较小,从而减小残差平方和 SSESSE。自然就会是 SSRSSR变大。自然就会是 R2R2变大。这就会引发一个问题。如果模型中增加一个自变量,即使这个自变量在统计上并不显著, R2R2的值也会变大。因此为了避免这个问题。提出了 调整的多种判定系数(adjusted multiple coefficient of determination):
R2a=1−(1−R2)(n−1n−k−1)
Ra2=1−(1−R2)(n−1n−k−1)
R2aRa2 同时考虑了样本量 (n)(n) 和模型中自变量的个数 (k)(k) 的影响,这就使得 R2aRa2 的值永远小于 R2R2,而且 R2aRa2 的值不会因为模型中自变量的个数增多而逐渐接近于 11
(2 ) R2R2 的平方根成为多重相关系数,也称为复相关系数, 它度量了因变量同 kk 个自变量的相关程度。
32 估计标准误差
同一元线性回归一样,多元回归中的估计标准误差也是误差项 εε 的方差 σ2σ2 的一个估计值,
se=SSEn−k−1−−−−−−−−√=MSE−−−−−√
se=SSEn−k−1=MSE
4 显著性检验
在此重点说明,在一元线性回归中,线性关系的检验 (F检验)(F检验) 和回归系数的检验 (t检验)(t检验) 是等价的。 但是在多元回归中,线性关系的检验主要是检验因变量同多个自变量线性关系是否显著,在 kk 个自变量中,只要有一个自变量与因变量的线性关系显著, F检验F检验 就能通过,但这不一定意味着每个自变量与因变量的关系都显著。回归系数检验则是对每个回归系数分别进行单独的检验,它主要用于检验每个自变量对因变量的影响是否都显著。如果某个自变量没有通过检验,就意味着这个自变量对因变量的影响不显著,也许就没有必要将这个自变量放进回归模型中。
41 线性关系的检验
步骤:
(1):提出假设
H0:β1=β2=…=βk=0
H0:β1=β2=…=βk=0
H1:β1,β2,…=βk至少有一个不等于0
H1:β1,β2,…=βk至少有一个不等于0
(2):计算检验的统计量F
F=SSR/kSSE/(n−k−1)≈F(k,n−k−1)
F=SSR/kSSE/(n−k−1)≈F(k,n−k−1)
(3):作出统计决策。
42 线性关系的检验
步骤:
(1):提出假设
H0:βi=0
H0:βi=0
H1:βi≠0
H1:βi≠0
(2):计算检验的统计量F
ti=βi^sβi^≈t(n−k−1)
ti=βi^sβi^≈t(n−k−1)
(3):作出统计决策。
51 多重共线性
多重共线性:当回归模型中两个或两个以上的变量彼此相关时,则称回归模型中存在多重共线性。
多重共线性的判别:
(1)模型中中各对自变量之间显著相关
(2)当模型的线性关系检验 (F检验)(F检验) 显著时,几乎所有的回归系数 βiβi 的 tt 检验却不显著。
(3)回归系数的正负号与预期的相反。
(4)容忍度(tolerance) 与 方差扩大因子(variance inflation factor, VIF)
容忍度:某个变量的容忍度等于 1 减去该自变量为因变量而其他 k−1k−1 个自变量为预测变量时所得到的线性回归模型的判定系数。即 1−R2i1−Ri2。 容忍度越小,多重共线性越严重。通常认为 容忍度小于 01 时,存在严重的多重共线性。
方差扩大因子:容忍度的倒数。 因此,VIFVIF 越大,多重共线性越严重,一般认为 VIFVIF 的值大于10时,存在严重的多重共线性。
52 多重共线性的处理
常见的两种办法:
(1)将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。
(2)如果要在模型中保留所有的自变量,那么应该:
(21)避免根据 tt统计量对单个参数 ββ 进行检验,
(22)对因变量 yy 值的推断(预测和估计)限定在自变量样本值的范围内。
53选择变量避免共线性的几种方式,
在建立回归模型时,我们总是希望用最少的变量来说明问题,选择自变量的原则通常是对统计量进行显著性检验,检验的根据是:将一个或一个以上的自变量引入回归模型中时,是否使残差平方和 (SSE)(SSE) 显著减少,如果增加一个自变量使残差平方和 (SSE)(SSE) 显著减少,则说明有必要将这个变量引入回归模型中,否则,没有必要将这个变量引入回归模型中。确定在模型中引入自变量 xixi 是否使残差平方和 (SSE)(SSE) 显著减少的方法,就是使用 FF 统计量的值作为一个标准,以此来确定在模型中增加一个自变量,还是从模型中剔除一个自变量。
变量选择方式:
531 向前选择;
第一步: 对 kk 个自变量分别与因变量 yy 的一元线性回归模型,共有 kk 个,然后找到 FF 统计量的值最大的模型及其自变量 xixi 并将其首先引入模型。
第二步: 在已经引入模型的 xixi 的基础上,再分别拟合 xixi 与模型外的 k−1k−1 个自变量的线性回归模型,挑选出 FF 值最大的含有两个自变量的模型, 依次循环、直到增加自变量不能导致 SSESSE 显著增加为止,
532向后剔除
第一步:先对所有的自变量进行线性回归模型。然后考察 p<kp<k 个去掉一个自变量的模型,使模型的SSE值减小最少的自变量被挑选出来从模型中剔除,
第二步:考察 p−1p−1 个再去掉一个自变量的模型,使模型的SSE值减小最少的自变量被挑选出来从模型中剔除,直到剔除一个自变量不会使SSE值显著减小为止,这时,模型中的所剩自变量自然都是显著的。
533逐步回归
是上面两个的结合、考虑的比较全,以后就用这个就可以。
具体的分析过程、咱们以spss的多元回归分析结果为例。
文章知识点与官方知识档案匹配
算法技能树首页概览
31292 人正在系统学习中
点击阅读全文
打开CSDN,阅读体验更佳
线性回归与非线性回归<em>分析</em>简明教程(python版)-全程干货无废话
<p> 本课程主要讲述如何使用python进行线性回归与非线性回归分析,包括: </p> <p> <br /> </p> <ul> <li> 基于statsmodel的线性回归方法 </li> <li> 基于sklearn的线性回归方法 </li> <li> 基于Numpy的一元多项式非线性回归方法 </li> <li> 基于sklearn的多元多项式非线性回归方法 </li> <li> 基于scipy的通用曲线拟合非线性回归方法 </li> </ul>
继续访问
最新发布 判别分析在SPSS上的实现与结果分析——基于SPSS实验报告
已知分组类别,判断样本的类别
继续访问
多元回归分析(实例,讲解,详实)doc
非常好的多元回归分析资料。 多元回归分析原理 回归分析是一种处理变量的统计相关关系的一种数理统计方法。回归分析的基本思想是: 虽然自变量和因变量之间没有严格的、确定性的函数关系, 但可以设法找出最能代表它们之间关系的数学表达形式。
SPSS多元回归分析实例
用SPSS 在大多数的实际问题中,影响因变量的因素不是一个而是多个,我们称这类回问题为多元回归分析。可以建立因变量y与各自变量xj(j=1,2,3,…,n)之间的多元线性回归模型
SPSS的线性回归分析
使用SPSS软件进行线性回归分析,包括回归分析概述 线性回归分析 回归方程的统计检验 多元回归分析中的其他问题 线性回归分析的基本 *** 作 线性回归分析的应用举例 曲线估计
spss进行多元线性回归并分析表格
本博客主要包含以下内容: 1如何使用spss进行多元线性回归。 2分析生成结果,并判断回归是否可行。 一、使用spss进行多元线性回归: 1输入数据 2 3 4 5 6 二、表格结果分析: R方是检验回归是否成功的重要要素之一,DW是残差独立性检验,衡量标准如下: 再看下一个表格: F的值是F检验的结果,他对应的P就是表格
继续访问
《统计学》笔记:第12章 多元线性回归
《统计学(第六版)》贾俊平 第12章 多元线性回归 多元回归模型 multiple regression model 设因变量为y,k个自变量分别为x1,x2,…,xk,描述因变量y如何依赖于自变量x1,x2,…,xk和误差项ε的方程称为多元回归模型。其一般形式可表示为: y=β0+β1x1+β2x2++βkxk+ϵ y=\beta_0+\beta_1x_1+\beta_2x_2++\beta_kx_k+\epsilon y=β0+β1x1+β2x2++βkxk+ϵ 式中,β
继续访问
多元线性回归分析spss结果解读_Spss的线性回归做法及结果解读
上一节我们讲过了eviews做多元回归,但是很多同学做问卷之类的都需要用到spss,所以这节我教一下大家如何用spss做多元回归,并对结果进行解读,再对大家所疑惑的显著水平做一些白话的解释。一.线性回归的 *** 作将因变量和自变量移入对应的框中,方法选择进入就好了。方法这里我们最多用的就是进入和逐步。二.回归模型的结果解读模型汇总模型RR 方调整 R 方标准 估计的误差1905a8188
继续访问
多重共线性详解
目录 1、多重共线性的现象 2、出现的原因 3、判别标准 4、检验方法 5、多重共线性有什么影响 6、多重共线性处理方法 7、其他说明 8、多重共线性识别-python代码81、vif检验82 相关系数83 聚类 9、宏观把握共线性问题91、共线性的一般性的影响92、共线性对线性回归、逻辑回归的影响 10、statsmodel库DF Residuals:残差的自由度Df Model:模型参数个数(不包含常量参数)R-squared:可决系数adj-R-squared:修正可决系数 1、多重共线性
继续访问
r语言多元线性回归_第三十一讲 R多元线性回归中的多重共线性和方差膨胀因子
在前两讲中,我们介绍了多元线性回归的概念以及多元线性回归中的交互作用。今天学习的主要内容是多元线性回归中的多重共线性和方差膨胀因子。1 共线性的概念1共线性在多元回归中,两个或多个预测变量可能彼此相关,这种情况称为共线性(multicollinearity)。2多重共线性存在一种称为多重共线性的极端情况,其中三个或更多变量之间存在共线性,即使没有一对变量具有特别高的相关性。这意味着预测
继续访问
Multiple Linear Regressions 多元线性回归 (R)
多元回归 多元回归是线性回归模型的自然延伸。它用于从几个解释变量预测响应的值。每个解释变量都有自己的系数。响应变量由所有变量乘以各自系数的组合来预测。 其基本原理与简单回归相同:我们寻求预测因子的线性组合,以最小化与结果变量的差异。 the parallel slopes model 平行斜率模型 数据展示 当我们遇到两个 变量的场景,其中一个是 数字型变量(温度),其中一个是 分类型变量(是否是周末),我们定义了下面这样的模型: X1 是“温度”,X2是 “是否是周末”
继续访问
多元线性回归分析spss结果解读_SPSS 多元线性回归结果重要参数解读
当自变量过多时,选择步进,此方法可以自动剔除对因变量影响小的变量。选择共线性诊断用于判断多个变量之间是否相互关联以及关联的程度德宾-沃森(Durbin-Watson)DW用来检验回归分析中的残差项是否存在自相关(序列相关)现象“DEPENDNT”:因变量“ZPRED”:标准化预测值“ZRESID”:标准化残差“DRESID”:删除残差“ADJPRED”:调节预测值“SRESID”:学生化残差“SD
继续访问
回归方程的拟合优度-多重判定系数-估计标准误差
2019独角兽企业重金招聘Python工程师标准>>>
继续访问
多元线性回归原理
例子先行 一元线性:拿房价预测来说,房价就只与一个特征size(feet^2)有关: 多元线性: 房子除了面积,还会有其他的特征:number of bedrooms;number of floors; age of home,为了引入这些特征,有了多元线性回归,x1,x2,x3,x4为特征,y为预测的价格。 符号引入: n:特征的数量
继续访问
SPSS软件介绍
SPSS软件界面描述 IBM SPSS是目前常用的一种统计分析软件,SPSS(Statistical Product and Service Solutions)是统计产品和服务解决方案软件, *** 作简单,无需写代码,只需确定要分析的数据及之间的因变、自变关系,以及需要做单因素、多因素、混合等分析即可。 SPSS的基本功能包括数据管理、统计分析、图表分析、输出管理等等。SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响
继续访问
多重共线性一些指标解释
ANOVA中 F检验是对整个模型而已的,看是不是自变量系数不全为0,这里F检验值23,对应P概率=0,显著性P<005,H1成立,说明显著性非常高 系数中 t检验则是分别针对某个自变量的,看每个自变量是否有显著预测效力。这里t检验对应概率大于005,即显著性一列为023和048,说明显著性很差 SPSS对于多重共线性的判断指标有以下几种:容忍度(Tolerance)、方差膨胀因子(V
继续访问
第12章 多元线性回归-整理2
122 回归方程的拟合优度 1221 多重判定系数 多重判定系数(multiple coefficient of determination)是多元回归中的回归平方和占总平方和的比例,它是度量多元回归方程拟合程度的一个统计量,反映了因变量y的变差中被估计的回归方程所解释的比例。 R2=SSRSST=1−SSESSTR^2=\frac{SSR}{SST}=1-\frac{SSE}{SST}R2=SSTSSR=1−SSTSSE调整的多重判定系数: Ra2=1−(1−R2)(n−1n−k−1)R^2_
继续访问
热门推荐 SPSS多元线性回归输出结果的详细解释
先说一句题外话,如果当年在大学里数理统计等课程结合SPSS,SAS,R等软件来讲,应该效果会好很多。 最近做了一些用SPSS进行线性回归的实验,还是感觉很多细节把握不好,这里结合我的实验结果,以及网上别人的介绍总结一下,先贴几张SPSS的输出: 下面简单解释一下这三张图中的结果: 第一个表模型汇总表中,R表示拟合优度(goodness of fit),它是用来衡量估计的模型对观测
继续访问
多元回归分析--学习笔记
回归系数解释:回多元回归情形下,对每一个回归系数的解释如下,当所有其他自变量保持不变时,bi是因变量y对应于自变量xi改变一个单位时所做的改变的估计值。 多元判定系数(R-sq):计算方法同简单线性回归,乘以100即可解释为:因变量y中的变异性能被估计多元线性回归方程解释的百分比 修正多元判定系数:多元判定系数的值总是随着新的自变量进入模型而增加,即使新增的变量在统计学上并不显
问题一:多元线性回归分析论文中的回归模型怎么分析 根据R方最大的那个来处理。(南心网 SPSS多元线性回归分析)
问题二:谁能给我列一下多元线性回归分析的步骤,这里正在写论文,第一部分是研究方法,多谢 10分 选题是论文写作关键的第一步,直接关系论文的质量。常言说:“题好文一半”。对于临床护理人员来说,选择论文题目要注意以下几点:(1)要结合学习与工作实际,根据自己所熟悉的专业和研究兴趣,适当选择有理论和实践意义的课题;(2)论文写作选题宜小不宜大,只要在学术的某一领域或某一点上,有自己的一得之见,或成功的经验.或失败的教训,或新的观点和认识,言之有物,读之有益,就可以作为选题;(3)论文写作选题时要查看文献资料,既可了解别人对这个问题的研究达到什么程度,也可以借鉴人家对这个问题的研究成果。
需要指出,论文写作选题与论文的标题既有关系又不是一回事。标题是在选题基础上拟定的,是选题的高度概括,但选题及写作不应受标题的限制,有时在写作过程中,选题未变,标题却几经修改变动。
问题三:用SPSS做多元线性回归,之后得到一些属于表格,该怎样分析这些数据? 200分 你的分析结果没能通过T检验,这可能是回归假设不满足导致的,需要进一步对数据进行验证,有问题可以私信我。
问题四:过于多元线性回归分析,SPSS *** 作 典型的多重共线。
多元回归分析中,一定要先进行多重共线检验,如VIF法。
对于存在多重共线的模型,一个办法是逐步回归,如你做的,但结果的删除变量太多,所以,这种方法效果不好。
此外,还有其它办法,如岭回归,主成分回归,这些方法都保留原始变量。
问题五:硕士毕业论文中做多元线性回归的实证分析,该怎么做 多元线性,回归,的实证分析
问题六:用SPSS做多元回归分析得出的指标结果怎么分析啊? 表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在001的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于005,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。
ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。
问题七:如何对数据进行多元线性回归分析? 5分 对数据进行多元线性回归分析方法有很多,除了用pss ,可以用Excel的数据分析模块,也可以用Matlab的用regress()函数拟合。你可以把数据发到我的企鹅邮箱,邮箱名为百度名。
问题八:经济类论文 多元线性回归 变量取对数 40分 文 多元线性回归 变量取对数
知道更多
多了解
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)