#include<fstream.h>
#include<stdio.h>
#include<string>
#include<conio.h>
//定义一些常量;
//本程序允许的最大临界区数;
#define MAX_BUFFER_NUM 10
//秒到微秒的乘法因子;
#define INTE_PER_SEC 1000
//本程序允许的生产和消费线程的总数;
#define MAX_THREAD_NUM 64
//定义一个结构,记录在测试文件中指定的每一个线程的参数
struct ThreadInfo
{
int serial //线程序列号
char entity //是P还是C
double delay //线程延迟
int thread_request[MAX_THREAD_NUM] //线程请求队列
int n_request //请求个数
}
//全局变量的定义
//临界区对象的声明,用于管理缓冲区的互斥访问;
CRITICAL_SECTION PC_Critical[MAX_BUFFER_NUM]
int Buffer_Critical[MAX_BUFFER_NUM]//缓冲区声明,用于存放产品;
HANDLEh_Thread[MAX_THREAD_NUM] //用于存储每个线程句柄的数组;
ThreadInfo Thread_Info[MAX_THREAD_NUM] //线程信息数组;
HANDLE empty_semaphore //一个信号量;
HANDLE h_mutex //一个互斥量;
DWORD n_Thread = 0 //实际的线程的数目;
DWORD n_Buffer_or_Critical //实际的缓冲区或者临界区的数目;
HANDLE h_Semaphore[MAX_THREAD_NUM]//生产者允许消费者开始消费的信号量;
//生产消费及辅助函数的声明
void Produce(void *p)
void Consume(void *p)
bool IfInOtherRequest(int)
int FindProducePositon()
int FindBufferPosition(int)
intmain(void)
{
//声明所需变量;
DWORD wait_for_all
ifstream inFile
//初始化缓冲区;
for(int i=0i<MAX_BUFFER_NUMi++)
Buffer_Critical[i] = -1
//初始化每个线程的请求队列;
for(int j=0j<MAX_THREAD_NUMj++){
for(int k=0k<MAX_THREAD_NUMk++)
Thread_Info[j].thread_request[k] = -1
Thread_Info[j].n_request = 0
}
//初始化临界区;
for(i =0i<MAX_BUFFER_NUMi++)
InitializeCriticalSection(&PC_Critical[i])
//打开输入文件,按照规定的格式提取线程等信息;
inFile.open("test.txt")
//从文件中获得实际的缓冲区的数目;
inFile >>n_Buffer_or_Critical
inFile.get()
printf("输入文件是:\n")
//回显获得的缓冲区的数目信息;
printf("%d \n",(int) n_Buffer_or_Critical)
//提取每个线程的信息到相应数据结构中;
while(inFile){
inFile >>Thread_Info[n_Thread].serial
inFile >>Thread_Info[n_Thread].entity
inFile >>Thread_Info[n_Thread].delay
char c
inFile.get(c)
while(c!='\n'&&!inFile.eof()){
inFile>>Thread_Info[n_Thread].thread_request[Thread_Info[n_Thread].n_request++]
inFile.get(c)
}
n_Thread++
}
//回显获得的线程信息,便于确认正确性;
for(j=0j<(int) n_Threadj++){
intTemp_serial = Thread_Info[j].serial
char Temp_entity = Thread_Info[j].entity
double Temp_delay = Thread_Info[j].delay
printf(" \n thread%2d%c%f ",Temp_serial,Temp_entity,Temp_delay)
int Temp_request = Thread_Info[j].n_request
for(int k=0k<Temp_requestk++)
printf(" %d", Thread_Info[j].thread_request[k])
cout<<endl
}
printf("\n\n")
//创建在模拟过程中几个必要的信号量
empty_semaphore=CreateSemaphore(NULL,n_Buffer_or_Critical,n_Buffer_or_Critical,
"semaphore_for_empty")
h_mutex = CreateMutex(NULL,FALSE,"mutex_for_update")
//下面这个循环用线程的ID号来为相应生产线程的产品读写时所
//使用的同步信号量命名;
for(j=0j<(int)n_Threadj++){
std::string lp ="semaphore_for_produce_"
int temp =j
while(temp){
char c = (char)(temp%10)
lp+=c
temp/=10
}
h_Semaphore[j+1]=CreateSemaphore(NULL,0,n_Thread,lp.c_str())
}
//创建生产者和消费者线程;
for(i =0i<(int) n_Threadi++){
if(Thread_Info[i].entity =='P')
h_Thread[i]= CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Produce),
&(Thread_Info[i]),0,NULL)
else
h_Thread[i]=CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)(Consume),
&(Thread_Info[i]),0,NULL)
}
//主程序等待各个线程的动作结束;
wait_for_all = WaitForMultipleObjects(n_Thread,h_Thread,TRUE,-1)
printf(" \n \nALL Producer and consumer have finished their work. \n")
printf("Press any key to quit!\n")
_getch()
return 0
}
//确认是否还有对同一产品的消费请求未执行;
bool IfInOtherRequest(int req)
{
for(int i=0i<n_Threadi++)
for(int j=0j<Thread_Info[i].n_requestj++)
if(Thread_Info[i].thread_request[j] == req)
return TRUE
return FALSE
}
//找出当前可以进行产品生产的空缓冲区位置;
int FindProducePosition()
{
int EmptyPosition
for (int i =0i<n_Buffer_or_Criticali++)
if(Buffer_Critical[i] == -1){
EmptyPosition = i
//用下面这个特殊值表示本缓冲区正处于被写状态;
Buffer_Critical[i] = -2
break
}
return EmptyPosition
}
//找出当前所需生产者生产的产品的位置;
int FindBufferPosition(int ProPos)
{
int TempPos
for (int i =0 i<n_Buffer_or_Criticali++)
if(Buffer_Critical[i]==ProPos){
TempPos = i
break
}
return TempPos
}
//生产者进程
void Produce(void *p)
{
//局部变量声明;
DWORD wait_for_semaphore,wait_for_mutex,m_delay
int m_serial
//获得本线程的信息;
m_serial = ((ThreadInfo*)(p))->serial
m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC)
Sleep(m_delay)
//开始请求生产
printf("Producer %2d sends the produce require.\n",m_serial)
//确认有空缓冲区可供生产,同时将空位置数empty减1;用于生产者和消费者的同步;
wait_for_semaphore = WaitForSingleObject(empty_semaphore,-1)
//互斥访问下一个可用于生产的空临界区,实现写写互斥;
wait_for_mutex = WaitForSingleObject(h_mutex,-1)
int ProducePos = FindProducePosition()
ReleaseMutex(h_mutex)
//生产者在获得自己的空位置并做上标记后,以下的写 *** 作在生产者之间可以并发;
//核心生产步骤中,程序将生产者的ID作为产品编号放入,方便消费者识别
printf("Producer %2d begin to produce at position %2d.\n",m_serial,ProducePos)
Buffer_Critical[ProducePos] = m_serial
printf("Producer %2d finish producing :\n ",m_serial)
printf(" position[ %2d ]:%3d \n" ,ProducePos,Buffer_Critical[ProducePos])
//使生产者写的缓冲区可以被多个消费者使用,实现读写同步;
ReleaseSemaphore(h_Semaphore[m_serial],n_Thread,NULL)
}
//消费者进程
void Consume(void * p)
{
//局部变量声明;
DWORD wait_for_semaphore,m_delay
int m_serial,m_requestNum//消费者的序列号和请求的数目;
int m_thread_request[MAX_THREAD_NUM]//本消费线程的请求队列;
//提取本线程的信息到本地;
m_serial = ((ThreadInfo*)(p))->serial
m_delay = (DWORD)(((ThreadInfo*)(p))->delay *INTE_PER_SEC)
m_requestNum = ((ThreadInfo *)(p))->n_request
for (int i = 0i<m_requestNumi++)
m_thread_request[i] = ((ThreadInfo*)(p))->thread_request[i]
Sleep(m_delay)
//循环进行所需产品的消费
for(i =0i<m_requestNumi++){
//请求消费下一个产品
printf("Consumer %2d request to consume %2d product\n",m_serial,m_thread_request[i])
//如果对应生产者没有生产,则等待;如果生产了,允许的消费者数目-1;实现了读写同步;
wait_for_semaphore=WaitForSingleObject(h_Semaphore[m_thread_request[i]],-1)
//查询所需产品放到缓冲区的号
int BufferPos=FindBufferPosition(m_thread_request[i])
//开始进行具体缓冲区的消费处理,读和读在该缓冲区上仍然是互斥的;
//进入临界区后执行消费动作;并在完成此次请求后,通知另外的消费者本处请求已
//经满足;同时如果对应的产品使用完毕,就做相应处理;并给出相应动作的界面提
//示;该相应处理指将相应缓冲区清空,并增加代表空缓冲区的信号量;
EnterCriticalSection(&PC_Critical[BufferPos])
printf("Consumer%2d begin to consume %2d product \n",m_serial,m_thread_request[i])
((ThreadInfo*)(p))->thread_request[i] =-1
if(!IfInOtherRequest(m_thread_request[i])){
Buffer_Critical[BufferPos] = -1//标记缓冲区为空;
printf("Consumer%2d finish consuming %2d:\n ",m_serial,m_thread_request[i])
printf(" position[ %2d ]:%3d \n" ,BufferPos,Buffer_Critical[BufferPos])
ReleaseSemaphore(empty_semaphore,1,NULL)
}
else{
printf("Consumer %2d finish consuming product %2d\n ",m_serial,m_thread_request[i])
}
//离开临界区
LeaveCriticalSection(&PC_Critical[BufferPos])
}
}
看函数就行
pthread_create(&id,NULL,move,stack)//若stack为字符数组而非字符指针时,传入时不需要强转调用时:
void* move(void* str)
{
char *p = (char*)str//由void*强转为char*
......
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)