正切函数的积分求法,通常需要将被积函数内的tanx替换为sinx/cosx,然后再结合cosxdx=dsinx,-sinxdx=dcosx等进行替换,简化。
∫tanxdx=∫sinx/cosxdx=∫1/cosxd(-cosx),注意∫sinxdx=-cosx,所以sinxdx=d(-cosx)=-∫1/cosxd(cosx),令u=cosx,du=d(cosx)=-∫1/udu=-ln|u|+C=-ln|cosx|+C或=ln|(cosx)^-1|+C=ln|1/cosx|+C=ln|secx|+C扩展资料在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。
三角函数是数学中属于初等函数中的超越函数的一类函数。
它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。
现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。
在物理学中,三角函数也是常用的工具。
在RT△ABC中,如果锐角A确定,那么角A的对边与邻边的比值随之确定,这个比叫做角A的正切,记作tanA。
即tanA=角A的对边/角A的邻边。
参考资料:搜狗百科正切
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)