不连续一定不可导吗

不连续一定不可导吗,第1张

连续一定不可导吗 不可导一定不连续吗?

不可导不一定不连续。

导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限。

连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次。

一、连续与可导的关系:1、连续的函数不一定可导。

2、可导的函数是连续的函数。

3、越是高阶可导函数曲线越是光滑。

4、存在处处连续但处处不可导的函数。

二、连续函数的例子:1、所有多项式函数都是连续的。

各类初等函数,如指数函数、对数函数、平方根函数与三角函数在它们的定义域上也是连续的函数。

2、绝对值函数也是连续的。

3、定义在非零实数上的倒数函数f= 1/x是连续的。

三、导数的由来:微积分是在17世纪末由英国物理学家、数学家牛顿和德国数学家莱布尼茨建立起来的。

微积分是由微分学和积分学两部分组成,微分学是基础。

微分学的基本概念是导数和微分,核心概念是导数。

导数反应了函数相对于自变量的变化率问题。

以上内容参考:百度百科-连续以上内容参考:百度百科-可导

“不连续的函数一定不可导”对不对

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/3918972.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-20
下一篇 2022-10-20

发表评论

登录后才能评论

评论列表(0条)

保存