具体回答如下:∫xsinxdx=-∫xd(cosx)=-xcosx+∫cosxdx (应用分部积分法)=-xcosx+sinx+C (C是积分常数)分部积分法是微积分学中的一类重要的、基本的计算积分的方法。
它是由微分的乘法法则和微积分基本定理推导而的。
它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。
扩展资料:如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。
那么它在这个区间上的积分也大于等于零。
如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
作为推论,如果两个函数上的可积函数f和g相比,f(几乎)总是小于等于g,那么f的(勒贝格)积分也小于等于g的(勒贝格)积分。
xsinx的定积分是什么?欢迎分享,转载请注明来源:内存溢出
评论列表(0条)