关于黎曼ζ函数ζ(s)的零点分布的猜想,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态,方程ζ(s)=0的所有有意义的解都在一条直线上。由数学家波恩哈德·黎曼于1859年提出。德国数学家戴维·希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,其中便包括黎曼假设。现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼假设。
黎曼猜想是波恩哈德·黎曼1859年提出的,这位数学家于1826年出生在当时属于汉诺威王国的名叫布列斯伦茨的小镇。1859年,黎曼被选为了柏林科学院的通信院士。作为对这一崇高荣誉的回报,他向柏林科学院提交了一篇题为“论小于给定数值的素数个数”的论文。这篇只有短短八页的论文就是黎曼猜想的“诞生地”。
黎曼那篇论文所研究的是一个数学家们长期以来就很感兴趣的问题,即素数的分布。素数又称质数。质数是像2、5、19、137那样除了1和自身以外不能被其他正整数整除的数。这些数在数论研究中有着极大的重要性,因为所有大于1的正整数都可以表示成它们的乘积。从某种意义上讲,它们在数论中的地位类似于物理世界中用以构筑万物的原子。质数的定义简单得可以在中学甚至小学课上进行讲授,但它们的分布却奥妙得异乎寻常,数学家们付出了极大的心力,却迄今仍未能彻底了解。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)