1、如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。
2、事实上,这个定理表明,平面向量可以在任意给定的两个方向上分解,任意两个向量都可以合成一个给定的向量,即向量的合成和分解。
3、当两个方向相互垂直时,它们实际上是在直角坐标系中分解的,(x,y)称为矢量的坐标。(矢量的起点是原点)所以这个定理为矢量的坐标表示提供了理论基础。
关于平面向量基本定理是什么的相关内容就介绍到这里了。
欢迎分享,转载请注明来源:内存溢出
1、如果两个向量a、b不共线,那么向量p与向量a、b共面的充要条件是:存在唯一实数对x、y,使p=xa+yb。
2、事实上,这个定理表明,平面向量可以在任意给定的两个方向上分解,任意两个向量都可以合成一个给定的向量,即向量的合成和分解。
3、当两个方向相互垂直时,它们实际上是在直角坐标系中分解的,(x,y)称为矢量的坐标。(矢量的起点是原点)所以这个定理为矢量的坐标表示提供了理论基础。
关于平面向量基本定理是什么的相关内容就介绍到这里了。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)