集合的运算

集合的运算,第1张

集合运算

集合的基本运算:交集、并集、相对补集、绝对补集、子集。集合简称集,是集合论的主要研究对象。现代的集合一般被定义为:由一个或多个确定的元素所构成的整体。



集合的特性

1、确定性

给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。

2、互异性

一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。

3、无序性

一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。



集合的基本运算:交集、并集、补集、子集。

集合交换律:A∩B=B∩A、A∪B=B∪A

集合结合律:(A∩B)∩C=A∩(B∩C) 、(A∪B)∪C=A∪(B∪C)

集合分配律:A∩(B∪C)=(A∩B)∪(A∩C)、A∪(B∩C)=(A∪B)∩(A∪C)

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/5249748.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-07
下一篇 2022-12-07

发表评论

登录后才能评论

评论列表(0条)

保存