克拉默法则

克拉默法则,第1张

克拉默法则

克莱姆法则,又译克拉默法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理。

1、当方程组的系数行列式不等于零时,则方程组有解,且具有唯一的解;

2、如果方程组无解或者有两个不同的解,那么方程组的系数行列式必定等于零。

3、克莱姆法则不仅仅适用于实数域,它在任何域上面都可以成立。

对于多于两个或三个方程的系统,克莱姆的规则在计算上非常低效;与具有多项式时间复杂度的消除方法相比,其渐近的复杂度为O(n·n!)。即使对于2×2系统,克拉默的规则在数值上也是不稳定的 。

它适用于变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》中发表的。其实莱布尼兹〔1693〕,以及马克劳林〔1748〕亦知道这个法则,但他们的记法不如克莱姆。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/5281727.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-07
下一篇 2022-12-07

发表评论

登录后才能评论

评论列表(0条)

保存