实数包括0。实数是有理数和无理数的总称,有理数包括0、正数、负数。所以实数包括0。数学上,实数定义为与数轴上的实数点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
实数性质
1、封闭性
实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。
2、有序性
实数集是有序的,即任意两个实数a、b必定满足并且只满足下列三个关系之一:au003eb,au003cb,a=b
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)