空间向量是指空间中具有大小和方向的量。向量的大小叫做向量的长度或模(modulus)。1.长度为0的向量叫做零向量,记为0。2.模为1的向量称为单位向量。3.与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a。4.方向相等且模相等的向量称为相等向量。
以下用向量法求解的简单常识:
1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB
2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC(其中x+y+z=1),则四点P、A、B、C共面.
3、利用向量证a∥b,就是分别在a,b上取向量a=λb(λ∈R).
4、利用向量证a⊥b,就是分别在a,b上取向量a·b=0 .
5、利用向量求两直线a与b的夹角,就是分别在a,b上取a,b,求μ,ν 的问题.
6、利用向量求距离即求向量的模问题.
7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)