辅助角公式

辅助角公式,第1张

辅助公式是公式可把含sinx,cosx的一次式的三角函数式化为Asin(x+φ)的形式,从而便于进一步探索三角函数的性质,由于该公式含有辅助角φ,故我们称之为辅助角公式。辅助角公式是李善兰先生提出的一种高等三角函数公式,使用代数式表达为asinx+bcosx=√(a²+b²)sin(a>0)。

辅助角公式

辅助角公式的主要作用是将多个三角函数的和化成单个函数,以此来求解有关最值问题。辅助角公式的内容是asinx+bcosx=√(a²+b²)sin[x+\arctan(b/a)](a>0)。在利用辅助角公式时,经常忘记反正切到底是b/a还是a/b,导致做题出错。

其实有一个很方便的记忆技巧,就是不管用正弦还是余弦来表示asinx+bcosx,分母的位置永远是你用来表示函数名称的系数。

辅助角公式:使用代数式表达为asinx+bcosx=√(a²+b²)sin[x+\arctan(b/a)](a>0)。

虽然该公式已经被写入中学课本,但其几何意义却鲜为人知。辅助角公式是李善兰先生提出的一种高等三角函数公式,是数学上的专业术语,隶属于高等数学知识。

相关如下

辅助角公式推理过程:

asinx+bcosx

=√(a^2+b^2){sinx*(a/√(a^2+b^2)+cosx*(b/√(a^2+b^2)}

=√(a^2+b^2)sin(x+φ)

所以:cosφ=a/√(a^2+b^2) 或者 sinφ=b/√(a^2+b^2) 或者 tanφ=b/a(φ=arctanb/a )

其实就是运用了sin的二倍角公式(逆过程,即倒推),要验证一下的话,就用sin^2+cos^2=1。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/7965464.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-12
下一篇 2023-04-12

发表评论

登录后才能评论

评论列表(0条)

保存