行业主要上市企业:目前国内物联网产业的上市公司主要有高新兴(300098)、东土科技(300353)、广和通(300638)、移远通信(603236)、日海智能(002313)、移为通信(300590
)
本文核心数据:物联网行业产业链、物联网行业产业链全景图
物联网行业产业链全景梳理:传感器芯片严重依赖进口
感知识别层可以对物理世界进行感知、识别和信息数据采集,涉及芯片、传感器、感知设备的研发及制造;网络传输层能对感知识别层的数据进行高效率、低消耗地传送,主要包括通信组模、通信网络及基础通信设施;
平台管理层是连接感知层和应用层的桥梁,其中物联网平台包括连接管理平台 CMP、设备管理平台 DMP、应用使能平台 AEP和业务分析平台
BAP,系统和软件则可以让物联网设备有效的运行;
应用服务层主要指各类智能终端硬件,以及系统集成应用服务。用户根据平台层汇集处理完的数据,对终端进行远程监控、控制和管理,实现物联网的价值。
自2018年中美贸易摩擦以来,美国加大了对中国高新技术出口的限制,不断扩大实体清单,影响了中国一些科技主导型企业的发展,这从侧面警示了中国在全球供应链中地位的脆弱性。物联网通过传感器把物理世界与数字世界联系起来,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。
其中传感器作为数据采集的源头,已经成为各种应用能力所需的数据来源所在。目前中国国内也涌现出了一些传感器芯片重点生产企业,如:高德红外、西人马、士兰微、敏芯微电子、博通、全志科技、大唐微电子、复旦微电子等。
物联网行业产业链区域热力地图:北京和广东物联网企业最密集
从物联网产业链代表性企业的区域分布情况来看,中国物联网产业链重点企业集中于广东、山东、江苏、浙江等发达地区。其中,广东依托其强大的经济实力在物联网领域发展较快,物联网代表性企业最密集。
从物联网产业链代表性企业的区域分布情况来看,中国物联网产业链重点企业集中于广东、北京、上海、浙江、江苏等发达地区。其中,北京和广东依托其强大的经济实力在物联网领域发展较快,物联网代表性企业最密集。
物联网行业代表企业收入规模
从我国物联网行业代表企业2020年收入规模来看,三大运营商中国移动、中国联通和中国电信物联网业务收入规模较大,处于行业领先地位。除此之外,日海智能物联网业务收入也排名在行业前列。
物联网行业代表企业最新投资动向
2020年以来,物联网产业代表性企业的投资动向主要包括拓展业务、通过对子公司增资的方式、与其他公司签订合作协议等方式投资物联网项目。物联网产业代表性企业最新投资动向如下:
——以上数据参考前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。
iv数据采集是离线数据采集技术工具,开放API工具开发的。离线数据采集技术,首先要是基于文件的数据采集系统、日志收集系统等,代表性的工具有Facebook公司开发的Scribe、Cloudera公司开发的Flume和Apache基金会支持的Chukwa等;其次是基于数据库和表的数据采集技术,基于数据库的数据采集系统中代表性工具有GoldenGate 公司的TMD、迪思杰公司而数据采集软件、IBM公司的CDC、MySQL支持的Binlog 采集工具等;在基于表的批量抽取软件中,广泛应用的是Sqoop和其他ETL工具。
开放API类,即数据源提供者开放的数据采集接口,可以用来软取限定的数据。在外部数据中,除了互联网数据采集技术,也有基于传感器应用的采集技术,这种技术在物联网中用得较多。此外,还有电信公司特有的探针技术,例如,我们在打电话、利用手机上网时,电信公司的路由器、交换机等设备中都会有数据交换,探针就是从这些设备上采集数据的技术。app移动端数据采集大数据收集的主要来源之一是物联网系统。根据查询相关公开信息显示,app移动端数据采集大数据收集的主要来源包括有物联网系统、传统信息处理系统以及互联网应用,物联网产生的数据多以非结构化数据为主,包括视频、音频、传感数据等等。本篇文章和大家说说数据采集的那些事儿
实现工业40,需要高度的工业化、自动化基础,是漫长的征程。工业大数据是未来工业在全球市场竞争中发挥优势的关键。无论是德国工业40、美国工业互联网还是《中国制造2025》,各国制造业创新战略的实施基础都是工业大数据的搜集和特征分析,及以此为未来制造系统搭建的无忧环境。不论智能制造发展到何种程度,数据采集都是生产中最实际最高频的需求,也是工业40的先决条件。
数字化工厂不等于无人工厂,产品配置,制造流程越复杂越多变,越需要人的参与;在数字化工厂当中,工人更多地是处理异常情况,调整设备。但数据采集一直是困扰着所有制造工厂的传统痛点,自动化设备品牌类型繁多,厂家和数据接口各异,国外厂家本地支持有限,不同采购年代。即便产量停机数据自动采集了,也不等于整个制造过程数据都获得了,只要还有其他人工参与环节,这些数据就不完整。
工业数据采集类型
互联网的数据主要来自于互联网用户和服务器等网络设备,主要是大量的文本数据、社交数据以及多媒体数据等,而工业数据主要来源于机器设备数据、工业信息化数据和产业链相关数据。
从数据采集的类型上看,不仅要涵盖基础的数据,还将逐步包括半结构化的用户行为数据,网状的社交关系数据,文本或音频类型的用户意见和反馈数据,设备和传感器采集的周期性数据,网络爬虫获取的互联网数据,以及未来越来越多有潜在意义的各类数据。主要包括以下几种:
1、海量的Key-Value数据。在传感器技术飞速发展的今天,包括光电、热敏、气敏、力敏、磁敏、声敏、湿敏等不同类别的工业传感器在现场得到了大量应用,而且很多时候机器设备的数据大概要到ms的精度才能分析海量的工业数据,因此,这部分数据的特点是每条数据内容很少,但是频率极高。
2、文档数据。包括工程图纸、仿真数据、设计的CAD图纸等,还有大量的传统工程文档。
3、信息化数据。由工业信息系统产生的数据,一般是通过数据库形式存储的,这部分数据是最好采集的。
4、接口数据。由已经建成的工业自动化或信息系统提供的接口类型的数据,包括txt格式、JSON格式、XML格式等。
5、视频数据。工业现场会有大量的视频监控设备,这些设备会产生大量的视频数据。
6、图像数据。包括工业现场各类图像设备拍摄的(例如,巡检人员用手持设备拍摄的设备、环境信息)。
7、音频数据。包括语音及声音信息(例如, *** 作人员的通话、设备运转的音量等)。
8、其他数据。例如遥感遥测信息、三维高程信息等等。
数据采集的方法
传统的数据采集方法包括人工录入、调查问卷、电话随访等方式,大数据时代到来后,一个突出的变化是数据采集的方法有了质的飞跃,下面所介绍的数据采集方式的突破直接改变着大数据应用的场景。
1、传感器
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。在生产车间中一般存在许多的传感节点,24小时监控着整个生产过程,当发现异常时可迅速反馈至上位机,可以算得上是数据采集的感官接受系统,属于数据采集的底层环节。
传感器在采集数据的过程中主要特性是其输入与输出的关系。
其静态特性反映了传感器在被测量各个值处于稳定状态时的输入和输出关系,这意味着当输入为常量,或变化极慢时,这一关系就称为静态特性。我们总是希望传感器的输入与输出成唯一的对照关系,最好是线性关系。
一般情况下,输入与输出不会符合所要求的线性关系,同时由于存在这迟滞、蠕变等因素的影响,使输入输出关系的唯一性也不能实现。因此我们不能忽视工厂中的外界影响,其影响程度取决于传感器本身,可通过传感器本身的改善加以抑制,有时也可以加对外界条件加以限制。
2、RFID技术
RFID(Radio Frequency Identification,射频识别)技术是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关的数据信息。利用射频方式进行非接触双向通信,达到识别目的并交换数据。RFID技术可识别高速运动物体并可同时识别多个标签, *** 作快捷方便。
在工作时,RFID读写器通过天线发送出一定频率的脉冲信号,当RFID标签进入磁场时,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者主动发送某一频率的信号(Active Tag,有源标签或主动标签)。
阅读器对接收的信号进行解调和解码然后送到后台主系统进行相关处理;主系统根据逻辑运算判断该卡的合法性,针对不同的设定做出相应的处理和控制,发出指令信号控制执行机构动作。
RFID技术解决了物品信息与互联网实现自动连接的问题,结合后续的大数据挖掘工作,能发挥其强大的威力。
数据采集技术难点
在当今的制造业领域,数据采集是一个难点。很多企业的生产数据采集主要依靠传统的手工作业方式,采集过程中容易出现人为的记录错误且效率低下。
有些企业虽然引进了相关技术手段,并且应用了数据采集系统,但是由于系统本身的原因以及企业没有选择最适合自己的数据采集系统,因此也无法实现信息采集的实时性、精确性和延伸性管理,各单元出现了信息断层的现象。
技术难点主要包括以下几方面:
1、数据量巨大。任何系统,在不同的数据量面前,需要的技术难度都是完全不同的。
如果单纯是将数据采到,可能还比较好完成,但采集之后还需要处理,因为必须考虑数据的规范与清洗,因为大量的工业数据是“脏”数据,直接存储无法用于分析,在存储之前,必须进行处理,对海量的数据进行处理,从技术上又提高了难度。
2、工业数据的协议不标准。互联网数据采集一般都是我们常见的>物联网会采集火灾自动报警系统的探测器报警、设备故障、设备动作、屏蔽等状态信息。对于消防火灾报警系统通过设备的RS232/485等数据接口采集数据,通过有线或无线方式与数据管理中心进行数据交互,实时提取控制器发出的探测器报警、设备故障、设备动作、屏蔽等状态信息。
物联网的体系结构可以分为感知层,网络层和应用层三个层次。
感知层。是物联网发展和应用的基础,包括传感器或读卡器等数据采集设备、数据接入到网关之前的传感器网络。感知层以RFID、传感与控制、短距离无线通信等为主要技术,其任务是识别物体和采集系统中的相关信息,从而实现对“物”的认识与感知。
网络层。是建立在现有通信网络和互联网基础之上的融合网络,网络层通过各种接入设备与移动通信网和互联网相连,其主要任务是通过现有的互联网、广电网络、通信网络等实现信息的传输、初步处理、分类、聚合等,用于沟通感知层和应用层。目前国内通信设备和运营商实力较强,是我国互联网技术领域最成熟的部分。
应用层。是将物联网技术与专业技术相互融合,利用分析处理的感知数据为用户提供丰富的特定服务。应用层是物联网发展的目的。物联网的应用可分为控制型、查询型、管理型和扫描型等,可通过现有的手机、电脑等终端实现广泛的智能化应用解决方案。
资料拓展:
物联网的整个结构可分为射频识别系统和信息网络系统两部分。射频识别系统主要由标签和读写器组成,两者通过RFID空中接口通信。读写器获取产品标识后,通过internet或其他通讯方式将产品标识上传至信息网络系统的中间件,然后通过ONS解析获取产品的对象名称,继而通过EPC信息服务的各种接口获得产品信息的各种相关服务。整个信息系统的运行都会借助internet的网络系统,利用在internet基础上的发展出的通信协议和描述语言。
因此我们可以说物联网是架构在internet基础上的关于各种物理产品信息服务的总和。从应用角度来看,物联网中三个层次值得关注,也即是说,物联网由三部分组成:一是传感网络,即以二维码、RFID、传感器为主,实现对“物”的识别。二是传输网络,即通过现有的互联网、广电网络、通信网络等实现数据的传输与计算。三是应用网络,即输入输出控制终端。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)