系统:Windows11
云计算是分布式计算的一种,指的是通过网络“云”将巨大的数据计算处理程序分解成无数个小程序,然后,通过多部服务器组成的系统进行处理和分析这些小程序得到结果并返回给用户。物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。
云计算具有高效的运算能力,在原有服务器基础上增加云计算功能能够使计算速度迅速提高,最终实现动态扩展虚拟化的层次达到对应用进行扩展的目的。计算机包含了许多应用、程序软件等,不同的应用对应的数据资源库不同,所以用户运行不同的应用需要较强的计算能力对资源进行部署,而云计算平台能够根据用户的需求快速配备计算能力及资源。
必须强调的是,虚拟化突破了时间、空间的界限,是云计算最为显著的特点,虚拟化技术包括应用虚拟和资源虚拟两种。众所周知,物理平台与应用部署的环境在空间上是没有任何联系的,正是通过虚拟平台对相应终端 *** 作完成数据备份、迁移和扩展等。
物联网是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、 连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。
云计算是实现物联网的核心。
运用云计算模式,使物联网中数以兆计的各类物品的实时动态管理,智能分析变得可能。物联网通过将射频识别技术、传感器技术、纳米技术等新技术充分运用在各行各业之中。
从物联网的结构看,云计算将成为物联网的重要环节。物联网与云计算的结合必将通过对各种能力资源共享、信息价值深度挖掘等多方面的促进带动整个产业链和价值链的升级与跃进。
各种物体充分连接,并通过无线等网络将采集到的各种实时动态信息送达计算处理中心,进行汇总、分析和处理。
扩展资料:
云计算的价值体现在以下几个方面:
1、对大量消费者提供产品或服务的企业可以利用大数据进行精准营销
2、做小而美模式的中小微企业可以利用大数据做服务转型
3、面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值
例如:
1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
3、统计学家内特西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
4、麻省理工学院利用手机定位数据和交通数据建立城市规划。
参考资料:
百度百科-物联网
根据IDC的数据,在未来五年内,将有超过90%的物联网数据托管在云平台上。其背后的原因是:
(1)大量的物联网数据生成将为大数据系统提供数据。
(2)降低物联网中数据混合的复杂性是使其收益最大化的标准之一。其背后的概念是一如果物联网应用程序和数据孤岛运行,我们将无法充分发挥其潜力。因此,为了获得更好的见解并做出决策,混合来自各种来源的信息(数据) 是最好的方法。
因此,对于上述两点,我们明确认为需要为物联网和大数据采用基于云的系统。这从产品导向转向基于信息的结果导向。
总而言之,物联网,大数据和云计算的融合利用了决策支持系统的新视野。此外,物联网,大数据和云计算的融合可以为所有行业提供新的机会和应用。云计算与物联网的关系
在很多时候云计算与物联网这两个名词是同时出现的,大家在直觉上认为这两个技术是有关系的,但总是没有很清楚的认识。有的地方一提到物联网就想到传感器的制造和物联信息系统。其实云计算和物联网两者之间本没有什么特殊的关系,物联网只是今后云计算平台的一个普通应用,物联网和云计算之间是应用与平台的关系。物联网的发展依赖于云计算系统的完善,从而为海量物联信息的处理和整合提供可能的平台条件,云计算的集中数据处理和管理能力将有效的解决海量物联信息存储和处理问题。没有云计算平台支持的物联网其实价值并不大,因为小范围传感器信息的处理和数据整合是早就有了的技术,如工控领域的大量系统都是这样的模式,没有被广泛整合的传感器系统是不能被准确的称为是物联网的。所以云计算技术对物联网技术的发展有着决定性的作用,没有统一数据管理的物联网系统将丧失其真正的优势,物物相联的范围是十分广阔的,可能是高速运动的列车、汽车甚至是飞机,当然也可能是家中静止的电视、空调、茶杯,任何小范围的物物相联都不能被称为真正的物联网。
同时对于云计算平台来说物联网并不是特殊的应用,对于云平台来说物联网只是其所支持的所有应用中的一种而已,云计算平台对待物联网系统与对待其它应用是完全一样的,并没有任何区别,因为云计算并不关心应用是什么。
所以对于物联网技术来说它需要解决的核心问题是:云计算平台的成熟和传感器技术的发展。有些地方仓促上马物联网项目不考虑其核心问题的解决将会使物联网技术陷入困境。当然对于一些行业性的、区域性的物联网项目,根据实际情况还是值得去做一些尝试的,这样既能满足现在的需要也能为今后的全面数据整合提供有益的经验。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)