什么是数字孪生技术

什么是数字孪生技术,第1张

数字孪生(Digital Twin)是以数字化方式创建物理实体的虚拟模型,借助数据模拟物理实体在现实环境中的行为。

简单的说,数字孪生就是在云端搭建一个和实际场景一模一样的虚拟现实环境,把实际环境的变化映射到虚拟现实场景中;同时,在虚拟现实场景中的 *** 作也同步影响现实世界中的设备运行。数字孪生的核心有两个,一个是物联网,一个是三维可视化仿真

其实,用一句话简单概括:数字孪生就是在一个设备或系统的基础上,创造了一个数字版的“克隆体”。就好比现实世界的你拥有了一个数字世界的 “孪生兄弟”, 你俩完美同步,数字世界的他甚至会比你更快地看待未来世界,提前告诉你未来会发生什么,如何应对。

数字孪生在新型智慧城市建设中可以进行数字孪生流域建设、数字孪生排水管网、数字孪生桥梁防撞指挥等应用场景,进行数字化、精细化、可视化管理。

一、数字孪生流域政策环境:

2021年12月23日水利部召开推进数字孪生流域建设工作会议,水利部部长李国英提出:“数字孪生流域是以物理流域为单元、时空数据为底座、数学模型为核心、水利知识为驱动,对物理流域全要素和水利治理管理全过程的数字化映射、智能化模拟,实现与物理流域同步仿真运行、虚实交互、迭代优化”,同时强调以数字化、网络化、智能化为主线,以数字化场景、智慧化模拟、精准化决策为路径,以算据、算法、算力建设为支撑,加快推进数字孪生流域建设,实现预报、预警、预演、预案功能。

二、水利信息化发展现状:

①透彻感知能力不足:

水利感知的覆盖范围和要素不全,对于水文信息、环境信息、工程信息等方面的监测能力已经不能满足现有业务发展和管理需要,虽然现在能够通过地面、水上、航空、航天等技术与设备进行信息采集工作,但整体智能化水平仍处于相对较低的程度。对于将要建设的数字孪生流域体系要求仍有较大的距离,物联网技术与设备也没有得到充分的利用,且通信基础能力较为薄弱,在网络带宽、应急措施方面均有不足。

②信息基础设施“算力”欠缺:

现有水利业务网中,仅有6个省(自治区)的水利业务网能够通达到乡镇级水利单位,对于工程管理单位来说联通率更低,严重阻碍了水利业务应用“三级部署、多级应用”的发展原则。骨干网络不能满足现有数据传输、服务调用的需要。面对现在越来越多的影像、图像等数据的快速增长,缺乏大数据处理、云计算与数据存储能力。

③信息资源开发利用有待提升:

水利内部信息系统缺乏整合,导致现有水利设施基础信息不全、准确性不高、基础数据不统一、对象代码不统一、数据标准不统一等问题,各类业务和各级部门间存在数据“重采、重存”的现象。同时对所需要的如地质信息等联系紧密的外部信息缺乏共享,联动不足。

④业务应用智能化水平差距较大:

现有水利信息系统中的水利工程、水资源开发、水灾旱灾防御、水土保持等业务均存在业务与信息技术融合不深入,智能化水平不足,对于5G、AI、大数据、物联网等新兴技术未能充分应用,最终导致信息系统对业务发展支撑能力薄弱的问题。

三、水利数字孪生,实现物理空间数字化映射与智慧化模拟

广东地空智能科技有限公司协同水利专业机构,在智慧水利领域进行了相关的钻研和实践,通过感知层抓取实时监测数据,基于全数字测量、大数据、云计算、地理信息、三维虚拟模型、人工智能、区块链等十余项高新技术,整合水利各项基础数据,以水利时空数据为重点研究对象,聚焦于水利数据的管理、展示与分析,对水利空间进行精细、全面、动态的模拟,构建水利业务横向共享、纵向联动,以此实现各级水利部门间信息联通,真正打通涉水信息孤岛,打破涉水业务分割,为管理者进行安全分析评估、工程运维管理、防汛调度管理、综合展示等提供可视化的便捷支持。数字孪生水利信息化监管平台集成数字孪生流域管理系统、数字孪生模拟仿真系统和数字孪生知识服务系统三大系统,融合与汇聚了多源数据,建立全时空、多维度、多粒度的水利全时空资源池,实现水利数据资产的一体化管理;一方面升级与拓展水利一张图,建设基础数据统一、 监测数据汇集、 二三维一体化、三级协同贯通的数字底板,提供水利场景的高保真、高稳定、高质量模拟仿真;另一方面集成耦合多维多时空尺度的水利专业模型和AI智能模型,提供集分析-模拟-表达-决策于一体的“四预”能力,为“2+N”业务提供智慧化服务。

链接:网页链接

数字孪生水利信息化监管平台聚焦数字孪生,以物理流域为单元,以水利时空数据为底座,以流域数据集成和可视化、水利模拟仿真为核心,以水利知识为驱动,运用物联网、大数据、人工智能、虚拟仿真等技术,实现物理空间内全域、全要素、全过程的数字化映射与智慧化模拟,支撑水利精准化决策。

四、整合数据,搭建数字孪生水利大数据中心:

基于水利行业相关的数据标准与规范,梳理水利数据资源目录,接入并整合多时空、多粒度、多维度水利数据,包括基础地理空间数据、业务管理数据、监测感知数据、跨行业共享数据等,经标准化处理,形成数字孪生水利大数据中心,为用户提供统一标准的数据服务。

五、分类入库,形成水利时空大数据全景图:

分类融合与汇聚多时空、多粒度、多维度水利数据,构建标准一致的水利数据资源池,形成水利时空大数据全景图,为用户提供全方位、多时空、多粒度的全时空数据资源服务。

子系统一:数字孪生流域管理系统

数字孪生流域管理系统是数字孪生水利信息化监管平台的基础,主要是建设数据底板,为模拟仿真、知识服务提供海量数据支撑。系统构筑统一门户,接入多源水利时空数据,打破数据壁垒,实现数据统一管理;建立物理空间到数字空间的虚拟映射,构建水利时空全景一张图;综合运用物联网、云计算、大数据、人工智能、地理信息等新型信息化技术手段,提供海量数据分析能力,实现对水利空间的精细、全面、动态模拟,为精细化管理提供支撑。

①多源异构数据接入,实现数据统一管理

②“物理-数字”全映射,形成水利资源“一张图”:

③软、硬件加持,助力海量数据分析:

子系统二:数字孪生模拟仿真系统

数字孪生模拟仿真系统是数字孪生流域管理系统的升级,主要是提供高保真、低延时、高稳定的三维可视化场景,为提供细化、量化、动态、直观的计算分析提供支撑。系统基于大场景高效率图形可视化技术,借助轻量化+webp+块存储+子域等一系列技术,提升整体加载效率与浏览流畅度,实现多源、多维度、多粒度数据的高保真、高质量空间化表达与仿真建模。

子系统三:数字孪生知识服务系统

数字孪生知识服务系统是数字孪生水利信息化监管平台的核心内容与最终目标,主要是集成耦合多维多时空尺度的数据模型,提供“四预”能力。系统在共享水利部本级、流域管理机构各类计算模型与计算成果的基础上,按需构建水利专业模型、人工智能模型和水利知识模型,形成数字孪生水利模型库,提供工程调度、安全监测、知识挖掘等智慧化服务,实现“预报、预警、预演、预案”功能的综合决策指挥。

①集成水利专业模型,推进水利精准模拟:

聚焦智慧水利与空间智能领域,广东地空智能科技有限公司致力于打造专业的水文-水动力-水质耦合模型,支撑流域、区域的防洪抗旱、水资源水环境的调度管理、智慧城市的防洪排涝与水环境治理、大江大河的水污染应急调度指挥等,推进水利精准化模拟与分析。

②引入AI智能模型,助力水利智慧决策:

利用遥感AI、视频AI等技术,对遥感影像进行自动解译和加工处理,对雨水情、工情、险情、旱情、水土流失、水质水环境、非法采砂、水域岸线占用等实现大尺度的动态监测预警,提升水利安全监测能力。

③建立水利知识模型,支撑水利知识服务:

以模型库、知识库为驱动,快速分析研判,优化完善应急方案,配合人员终端信息交互,为单位内部以及与流域管理机构、水利部的异地多方会商、相关人力、物力资源应急调度指挥等提供支撑。

数字孪生作为普适的理论技术体系,可以在产品设计、产品制造、医学分析、工程建设等领域应用。这项技术需要在数字空间中根据现实各项数据与参数建立模型,通过传感器实现状态同步,既可以帮助航空公司实现航空器监控、维护与保障,还可以提高机场运行效率。接下来,让我们在中国民航科学技术研究院研发中心副主任杨杰的带领下揭开这项技术的神秘面纱。

技术有前景

数字孪生是充分利用物理模型、传感器更新、运行 历史 等数据,集成多学科、多物理量、多尺度、多概率的仿真过程,在虚拟空间中完成映射,从而反映相对应的实体装备的全生命周期过程。通俗地说,数字孪生就是在一个设备或系统的基础上,通过采集各项数据,创造一个数字版的孪生体。

“目前民航业内的数字孪生系统应用大多基于三维地理信息,还停留在静态数字孪生阶段,数据更新频率低,主要功能是信息集成和数据可视化。”杨杰介绍道,“下一步将做到动态数字孪生,以这项技术为载体,集成机场与航空器的数据,在将接入的数据可视化展示后,通过孪生体反向控制实体世界,达到流程控制的目的。未来,还可能结合5G、人工智能、泛在感知等技术,实现精准控制。”

在数字孪生技术中,一个系统存在于现实的物理世界,一个系统存在于虚拟的计算机世界。在理想状态下,本体与孪生体可以建立全面的实时或准实时联系。二者并不是完全独立的,映射关系也具备一定实时性、双向性,根据孪生体反馈的信息,对本体采取进一步的行动并实施干预。以飞机维修为例,首先在数字空间中建立真实飞机的模型,通过传感器实现其与飞机真实状态完全同步,每次飞行后根据结构情况和过往载荷,及时分析评估是否需要维修,能否承受下次的任务载荷等。

“飞机维修只是数字孪生的一个点,点点相连就会形成面。目前国内很多机场都上线了全景视频系统,通过该系统能够在塔台或运行指挥中心看到机场场面的实时情况。但在雨、雪、雾霾等恶劣天气下,部分摄像头受到遮蔽,可能对关键动态目标监控产生影响。在应用数字孪生系统后,通过传感器实时采集数据,可反映目标的运行情况,为工作人员提供更准确的信息,从而提升运行保障能力。未来,随着技术的发展,点点相连成面,面面相连成体,传统的金字塔式结构将不复存在,万物互联成为现实,感知无处不在,数字孪生技术将有更大的发挥空间。”杨杰说。

目前,多数机场在执行任务时仍然依靠终端平台作出决策。例如,当车辆侵入跑道时,塔台工作人员需要分别指挥航空器和车辆,以达到避让目的。未来,传感器将部署在航空器和车辆上,两个不同类型的终端都够获取彼此的数据。一旦存在跑道侵入风险,通过边缘计算,数字孪生系统将直接通知车辆驾驶员避让并提供撤离路线,响应速度快,安全系数高,毫秒级的告警响应时间将消除延时带来的安全隐患。

研发有基础

今年初,民航局印发了《智慧民航建设路线图》,将智慧民航总体设计分解为五大主要任务、四个核心抓手、三类产业协同、十项支撑要素与48个场景视点。智慧民航建设需要数字孪生技术的开发和应用,而数字孪生技术能够以全流程便捷出行、基于四维航迹的精细运行、机场全域协同运行、数据驱动的行业监管等场景试点为切入点,助力产业协同,在智慧民航建设中大显身手。

高楼大厦并非凭空而起,技术的研究与发展同理。自2013年起,航科院开始建立ADS-B地面站,ADS-B所收集的数据对数字孪生技术应用大有裨益。除此之外,广州白云机场、深圳宝安机场等使用的机场场面飞行区车辆监控系统,国航、川航等应用的全球航班追踪监控系统,不仅为航空器追踪监控与车辆追踪监控积累了丰富的经验,也为数字孪生技术的开发与应用打下了坚实基础。

5G时代的来临让数字孪生技术如鱼得水。万物互联让数据传输速度变得越来越快,传感器和摄像头随处可见,能捕获的信息细节也越来越多,以三维地理信息为蓝本的传统机场运控系统已经无法满足时代的需求。据了解,航科院此次的数据孪生技术开发以 游戏 引擎为载体,将相关数据接入后,不仅能够实现数据集成和可视化,还可以让系统运行更加顺畅,孪生世界与真实世界的关键信息在感官体验层面上做到了同步与一致。

目前,数字孪生技术的开发和应用还停留在信息集成和数据可视化阶段,但已经为机场和航空器运行带来不小的影响。动态的数字孪生技术将触及民航业的所有流程,为各个流程提效赋能。

基于数字孪生,机场、人员、航空器、车辆等数据可以生成实时孪生画面,让人员培训更加便捷。车辆驾驶员不再需要拿着教材走进教室学习机场驾驶规则,而是在系统实时运行场景中习得;无人驾驶将更加智能,设备和车辆将首先经过数字孪生系统的测试,之后才正式量产应用,从而最大限度地降低成本……

数据是关键

“数据采集得越全,可以实时分析的数据越多,就越接近真实情况”。一方面,ADS-B等技术所收集的数据与数字孪生技术相辅相成,但每项技术都有使用倾向,采集数据存在局限性。ADS-B传输的数据仅限于航空器位置、高度、航向、速度、爬升率等,该技术的设计初衷更偏向于空中管制使用,而油量、发动机参数、飞行管理计算机输出信息等数据则无法从中获得,数据需要多接口接入。另一方面,真实世界的数据采集还未实现全面覆盖,摄像头与传感器随着时代的发展不断增加,接入设施设备的数量也将慢慢增加。此外,对人位置数据的实时采集涉及隐私等多方面问题,需要更加谨慎地对待。

“空间数据采集的关键指标是精度和采集频率。在GPS系统和正在逐步投入使用的北斗卫星系统中,位置精度和定位精度都可以达到分米级甚至厘米级,能够满足机场在运行中的大部分需求。”杨杰介绍道,“但技术发展的主要桎梏在于位置的回传频率。虽然现在的技术已经可以达到20赫兹的标准,也就是每秒回传20次数据信息,但是很多机场还停留在每秒一次、几秒一次的回传状态。”

传统雷达监控与数据站监视等方式数据回传频率差异较大,短则4秒一次,长则15分钟一次,无法做到真实世界的实时反映。在加装ADS-B后,数据回传最快可以达到1秒两次,但与20赫兹的技术能力仍相去甚远。

“20赫兹在国内机场基本没有应用,能达到5赫兹的都少之又少。回传频率越高,消耗的网络带宽越大,后台处理器的处理压力也就越大。从这个角度来看,想要数字孪生技术发挥更大作用首先要解决这些问题。”杨杰解释道。

只有处理好数据采集、回传频率、精度、处理等问题,数字孪生技术才会真正为智慧机场建设添砖加瓦,而不是一个提供数据可视化平台的“花瓶”。这类信息化技术与传统基建有机融合,将云计算、大数据、物联网、人工智能、5G通信等作为核心手段,推动我国机场高质量发展、跨越式进阶。

2021年12月1日,亚马逊云 科技 在2021 re:Invent全球大会上宣布推出Amazon IoT TwinMaker,可以让开发人员更加轻松、快捷地创建现实世界的数字孪生,如楼宇、工厂、工业设备和生产线。

数字孪生是物理系统的虚拟映射,可根据其所代表的现实世界对象的结构、状态和行为定期更新。Amazon IoT TwinMaker让开发人员可以轻松汇集来自多个来源(如设备传感器、摄像机和业务应用程序)的数据,并将这些数据结合起来创建一个知识图谱,对现实世界环境进行建模。客户可以通过Amazon IoT TwinMaker,使用数字孪生来构建反映现实世界的应用程序,提高运营效率并减少停机时间。使用Amazon IoT TwinMaker无需预付费用,客户只需为使用的服务付费。

开发人员可以将Amazon IoT TwinMaker连接到设备传感器、视频源和业务应用程序等数据源,快速开始构建设备、装置和流程的数字孪生。为方便从各种数据源收集数据,Amazon IoT TwinMaker包含适用于Amazon IoT SiteWise、Amazon Kinesis Video Streams和Amazon S3的内置连接器(客户也可以为Amazon Timestream或Snowflake等数据源添加自己的连接器)。

Amazon IoT TwinMaker会自动创建一个知识图谱,整合并理解所连接数据源的关系,因此它可以使用被映射系统的实时信息更新数字孪生。客户可以将现有的3D模型(例如CAD和BIM文件、点云扫描等)直接导入Amazon IoT TwinMaker,轻松创建物理系统(例如楼宇、工厂、设备、生产线等)的3D视图,并将知识图谱中的数据叠加到3D视图上,创建数字孪生。

数字孪生创建完毕后,开发人员就可以使用适用于Amazon Managed Grafana的Amazon IoT TwinMaker插件创建基于Web的应用程序,在工厂 *** 作员和维护工程师用于监控和检查设施和工业系统的设备上,即可显示该应用程序的数字孪生。例如,开发人员可以通过将来自工厂设备传感器的数据与运行中的各种机器的实时视频以及这些机器的维护 历史 相关联,创建金属加工厂的虚拟映射。然后,开发人员可以设置规则,在检测到工厂熔炉中的异常情况(例如温度已超过阈值)时向工厂 *** 作员发出警报,并在工厂 3D 模型的熔炉实时视频中显示这些异常,这可以帮助 *** 作员在熔炉发生故障之前快速做出预测性维护决策。

亚马逊云 科技 IoT总经理Michael MacKenzie表示:“客户对有机会使用数字孪生来改善其运营和流程感到兴奋,但为不同使用场景创建数字孪生和自定义应用程序所涉及的工作复杂且昂贵,令大多数企业望而却步。Amazon IoT TwinMaker包括大多数客户构建数字孪生模型所需的内置功能,例如连接不同来源的数据,建模物理环境,以及可视化具有空间维度的数据。Amazon IoT TwinMaker的推出让更多客户可以全面了解他们的工业设备、设施和流程,实时监控和优化其运营的各个环节。”

Amazon IoT TwinMaker现已在美国东部(弗吉尼亚北部)、美国西部(俄勒冈)、亚太地区(新加坡)和欧洲(爱尔兰)区域提供预览,其他区域也将很快推出。

目前,已有一些企业使用了Amazon IoT TwinMaker进行数字化升级。

开利(Carrier Global)是一家建筑与冷链解决方案提供商。“通过我们的Abound平台,我们可以从各种系统和传感器中汇总楼宇性能数据,让客户实时了解其互联空间。为物业主和运营商提供数字孪生以增强该平台一直是我们的首要任务。”开利数字化和云高级总监Dan Levine表示:“然而,内部开发这一能力并非易事,面临着成本高昂、进展缓慢等一系列问题。通过Amazon IoT TwinMaker,我们发现了可以显著加快Abound平台技术战略的关键推动力。Amazon IoT TwinMaker将帮助我们的开发团队专注于快速创建差异化的客户成果,既不用将大量精力投入到繁重的数字孪生数据抽象工作中,也无需向我们的解决方案添加3D可视化。”

另一个典型案例是埃森哲。制造业的数字化转型对埃森哲的客户而言是一个巨大的机会,但他们经常会面临零散、孤立和非结构化工业数据的挑战,导致许多概念验证无法扩展。埃森哲Industry X行业数字制造与运营全球技术主管Maikel van Verseveld认为:“我客户希望在开始并扩展他们的数字化制造之旅时,拥有能够快速应对这些挑战的工具。通过Amazon IoT TwinMaker,他们现在可以轻松地创建数字孪生,从不同的 IT 和 OT 系统中获得更加情境化、数据驱动和实时的制造运营视图,从而让最终用户可以做出更好的决策并优化运营。通过埃森哲与亚马逊云 科技 紧密协作的团队,我们已经能够开始借助Amazon IoT TwinMaker为客户带来价值。”

关于亚马逊云 科技

超过15年以来,亚马逊云 科技 (Amazon Web Services)一直以技术创新、服务丰富、应用广泛而享誉业界。亚马逊云 科技 一直不断扩展其服务组合以支持几乎云上任意工作负载,目前提供超过200项全功能的服务,涵盖计算、存储、数据库、网络、数据分析、机器学习与人工智能、物联网、移动、安全、混合云、虚拟现实与增强现实、媒体,以及应用开发、部署与管理等方面;基础设施遍及25个地理区域的81个可用区(AZ),并已公布计划在澳大利亚、加拿大、印度、印度尼西亚、以色列、新西兰、西班牙、瑞士和阿联酋新建9个区域、27个可用区。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10579848.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存