物联网的体系结构可以分为感知层,网络层和应用层三个层次。
感知层。是物联网发展和应用的基础,包括传感器或读卡器等数据采集设备、数据接入到网关之前的传感器网络。感知层以RFID、传感与控制、短距离无线通信等为主要技术,其任务是识别物体和采集系统中的相关信息,从而实现对“物”的认识与感知。
网络层。是建立在现有通信网络和互联网基础之上的融合网络,网络层通过各种接入设备与移动通信网和互联网相连,其主要任务是通过现有的互联网、广电网络、通信网络等实现信息的传输、初步处理、分类、聚合等,用于沟通感知层和应用层。目前国内通信设备和运营商实力较强,是我国互联网技术领域最成熟的部分。
应用层。是将物联网技术与专业技术相互融合,利用分析处理的感知数据为用户提供丰富的特定服务。应用层是物联网发展的目的。物联网的应用可分为控制型、查询型、管理型和扫描型等,可通过现有的手机、电脑等终端实现广泛的智能化应用解决方案。
资料拓展:
物联网的整个结构可分为射频识别系统和信息网络系统两部分。射频识别系统主要由标签和读写器组成,两者通过RFID空中接口通信。读写器获取产品标识后,通过internet或其他通讯方式将产品标识上传至信息网络系统的中间件,然后通过ONS解析获取产品的对象名称,继而通过EPC信息服务的各种接口获得产品信息的各种相关服务。整个信息系统的运行都会借助internet的网络系统,利用在internet基础上的发展出的通信协议和描述语言。
因此我们可以说物联网是架构在internet基础上的关于各种物理产品信息服务的总和。从应用角度来看,物联网中三个层次值得关注,也即是说,物联网由三部分组成:一是传感网络,即以二维码、RFID、传感器为主,实现对“物”的识别。二是传输网络,即通过现有的互联网、广电网络、通信网络等实现数据的传输与计算。三是应用网络,即输入输出控制终端。
我国目前中小容量机组(200 MW及以下)在火电厂中占相当大的比例,这些机组的监控模式为模拟控制系统加以常规仪表为主的数据采集系统。这种监控模式存在着检修维护工作量大、没有可靠的历史记录等缺点。而且常规模拟仪表也进入老化淘汰期,设备可靠性明显降低,某些仪表的备品备件也得不到保障,因此中小型机组监控系统的技术改造工作已势在必行。结合我国国情,借鉴国内类似系统的研制经验,开发出一套经济实用的FDC-Ⅱ型分布式发电厂运行实时数据监测系统,既可用于中小机组技术改造,又可应用于变电站、供电局等电力生产、管理部门。该系统目前已在山东省某150 MW火力发电厂投入实际运行。1 系统功能与特点
11 功能简介
目前我国国产机组热控装置的质量和主辅机的可控性不尽人意,设计、安装、调试、运行水平等都存在一些问题,针对这一现状设计了FDC-Ⅱ型分布式发电厂运行实时数据监测系统。它是只有监视功能而没有控制功能的计算机监视系统,即数据采集系统——DAS〔1〕。
该系统可以采集的发电厂运行数据包括电气参数和非电气参数两类。其中电气参数主要有电流、电压、功率、频率等模拟量,断路器状态、隔离开关位置、继电保护动作信号等开关量以及表示电度的脉冲量等。而非电气参数种类较多,既可以是采集火力发电厂运行中的各种温度、压力、流量等热工信号,也可有水电厂中的水位、流速、流量等水工信号,还可以采集诸如绝缘介质状态、气象环境等其它信号。
该系统还包括用Visual C+ +开发的后台处理软件,主要有数据处理、数据库管理、实时监视、异常处理、统计计算及报表、性能分析及运行指导等功能。
12 主要特点
该系统具有如下特点:
a 数据采集通用性较强。不仅可采集电气量,亦可采集非电气量。电气参数采集用交流离散采样,非电气参数采集采用继电器巡测,信号处理由高精度隔离运算放大器AD202JY调理,线性度好,精度高。
b 整个系统采用分布式结构, 软、硬件均采用了模块化设计。数据采集部分采用自行开发的带光隔离的RS-485网, 通信效率高, 安全性好, 结构简单。后台系统可根据实际被监控系统规模大小及要求, 构成485网、Novell网及Windows NT网等分布式网络。由于软、硬件均为分布式、模块化结构,因而便于系统升级、维护, 且根据需要组成不同的系统。
c 数据处理在Windows NT平台上采用Visual C+ +语言编程,处理能力强、速度快、界面友好,可实现网络数据共享。
d 整个系统自行开发,符合我国国情。对发电厂原有系统的改动很小,系统造价较低,比较适合中小型发电厂技术改造需要。
2 系统结构概述
系统采用全分布式结构,模块化的软、硬件设计,RS-485光隔离通信网络。系统的结构如图1所示。采集模块完成热工量、开关量、脉冲量及电流、电压和有功、无功功率的采集处理。主通信控制器负责管理网上数据通信,通信转换器则完成RS-485与RS-232的电平转换,将采集的实时数据送到微机室、主控室、厂长室等各处的PC机中,以丰富友好的人机界面显示全面的运行信息。
图1 系统结构简图
21 硬件设计
硬件电路是数据采集和处理的基础。首先为该系统设计开发了一套实用的电路板。它们以Intel 80C196和Intel 80C198 CPU为基础,配合数据采集、通信控制、人机联系等电路,形成了一套比较完整实用的硬件电路系统。各电路板的尺寸与目前国内流行的STD总线板完全一致,采用我们自己定义的背部56总线连接板将若干块电路板连接在一起,构成数据采集工作站,完成数据的采集和通信工作。该系统的电路板主要有以下几种类型。
211 80C196主CPU板
a Intel 80C196 16位微控制器及相连的程序存储器27256、数据存储器62256;
b 1块512字节电可改写的串行E2PROM 93C66,用于存储系统定值、运行参数以及诸如电度量等累计量;
c 2个并行口及其辅助逻辑电路,用于与外部其它电路板相连接;
d 1个光电隔离的RS-485或RS-232接口,用于构成分布式通信网络或串行通信。
212 80C198交流采样数据采集板
a Intel 80C198准16位微控制器及相连的程序存储器27256、数据存储器62256。
b 512字节的串行E2PROM 93C66。
c 交流采样电路,由3块多路切换开关13508和1块模数转换器AD574组成。通过交流采样的方式,采集16路电气参数,省却了电量变送器等辅助设备。由于采用了12位A/D转换器AD574,系统的数据采集精度得到了较大程度的提高。
d 测频电路,用于测量工频周期。
其功能主要是与主CPU板相配合,完成交流离散采样电气参数的数据采集。该板上有自己的CPU(Intel 80C198),进行交流离散采样采集数据时将大大减轻主CPU的工作负担,并能够完成一些较为复杂的数据处理工作。
213 遥信、脉冲量采集板
可采集16路遥信信号或16路脉冲信号,各路信号均采用光电隔离技术,以保证系统的安全和可靠性。每一块CPU板可以支持4块遥信量、脉冲量采集板,这样一个采集结点,最多可以采集64路遥信量或者脉冲量。该电路板主要用于对开关位置状态信号、继电保护动作信号的遥信量和各种脉冲量的数据采集。
对遥信量的采集可用两种方式实现。查询方式可以简化采集软件的设计;中断方式则能够保证遥信变位时的快速响应,以提高对紧急事件的处理能力和事件顺序记录的分辨率。
214 热工量信号采集板
通过继电器巡测的方法,采集16路热工信号,可用于热电偶输出的毫伏级信号、毫安级的小电流信号和热电阻输出的电阻信号的数据采集。
使用继电器巡测的目的是隔离,在继电器没有闭合时,整个采集系统与热工测量元件之间是隔离的,即使是在继电器闭合期间,各路采集信号之间也是相互隔离的。这既保证了系统的安全可靠,又不至由于采集系统的投入而影响原有的测量仪表的测量精度。考虑到热工信号共同的特点是变化相对较慢,所以采用继电器巡测。经过反复实验证明,每一路信号的采集时间最小控制在10 ms,就能保证信号采集正确,完全能够满足热工量采集的时间要求。
在该电路板上,设有一块高精度线性隔离运算放大器AD202,用于信号调理放大。这种运算放大器最大非线性度仅为±0025%,这就为高精度数据采集测量提供了可能;具有较高的共模抑制比,在放大倍数为100时,其共模抑制比可达130 dB,抗共模干扰能力较强;具有隔离作用,其内部有专门的振荡电路(振荡波频率为25 kHz),将输入端测量信号用振幅调制的方法,经变压器隔离耦合到输出端,从而实现隔离放大的目的,其输入和输出之间的隔离电压可以达到峰—峰值±2 000 V,完全可以满足一般电力系统数据采集隔离放大的需要。对于热工信号的数据采集和处理,它是较为理想的隔离运算放大器。
22 软件设计
若数据采集的工作对硬件设计有较高的要求,则数据处理主要依赖于软件。我们为电力系统数据采集与处理系统开发的系统软件分为两大部分:实时监控软件和后台数据处理软件。这里主要介绍实时监控软件的设计。
软件采用Intel 80C196的汇编语言编写。由于系统需要采集的电气量和热工量的数目很多,如何保证系统的实时性则显得至关重要。对电气参数的采集采用了交流离散采样技术,该技术现在已经发展得比较成熟,实时性比较容易保证;而对热工量采集,由于采用了继电器作为隔离和多路选择器件,其动作速度相对于电子电路来说则比较慢,因此更需要重视数据测量的实时性。为此设计了实时多任务 *** 作系统,同时在通信方面作了精心设计,有效地提高了系统的实时性。
对于CPU所要完成的各种不同任务,根据其重要性和执行特点,赋予了不同的优先级,原则上是优先级越高的任务被执行的频率越高。例如,对遥信量扫查采集任务每隔10 ms执行一次,而对LED显示刷新任务则每隔500 ms执行一次。这样既可以保证紧急任务的随时执行,又不至于使CPU过多地忙于处理一些非紧急任务而影响系统的实时性。具体的做法是通过设置一个任务标志字,规定其16位分别对应着16个用户任务,如果需要执行某个任务,则置对应的任务标志位为1,反之则清0。通过80C196的软件定时中断程序,定时地为各种任务设置执行标志, *** 作系统就可以确定在任意时刻需要执行的任务。然后,设计一个任务扫查程序,它循环地检查任务标志字中的每一位,以确定是否需要执行对应的任务,从而保证对于各个任务的及时处理SCADA(Supervisory Control And Data Acquisition,监控与数据采集)系统是基于计算机通讯和控制技术发展起来的生产过程控制与调度自动化系统,它可以对现场的运行设备进行监视和控制,以实现数据采集、测量、各类信号报警、设备控制以及参数调节等各项功能。
SCADA系统分为三层架构。第一层为数据采集层,第二层为数据监控层,第三层为数据应用层
物联网和SCADA系统以及其它工业自动化系统,都属于计算机网络技术发展中的产物,它们有许多共同的特点,比如体系架构结构、数据采集功能、对通讯网络的依赖、数据处理等,但是物联网和SCADA系统在发展和应用过程中也存在诸多问题。
物联网技术涵盖感知层、网络层、平台层和应用层四个部分。
感知层的主要功能就是采集物理世界的数据,其是人类世界跟物理世界进行交流的关键桥梁。比如在智能喝水领域会采用一种流量传感器,只要用户喝水,流量传感器就会立即采集到本次的喝水量是多少,再比如小区的门禁卡,先将用户信息录入中央处理系统,然后用户每次进门的时候直接刷卡就行。(了解更多智慧人脸识别解决方案,欢迎咨询 汉玛智慧)
网络层主要功能就是传输信息,将感知层获得的数据传送至指定目的地。物联网中的“网”字其实包含了2个部分:接入网络、互联网。以前的互联网只是打通了人与人之间的信息交互,但是没有打通人与物或物与物之间的交互,因为物本身不具有联网能力。后来发展出将物连接入网的技术,我们称其为设备接入网,通过这一网络可以将物与互联网打通,实现人与物和物与物之间的信息交互,大大增加了信息互通的边界,更有利于通过大数据、云计算、AI智能等先进技术的应用来增加物理和人类世界的丰富度。
平台层可为设备提供安全可靠的连接通信能力,向下连接海量设备,支撑数据上报至云端,向上提供云端API,服务端通过调用云端API将指令下发至设备端,实现远程控制。物联网平台主要包含设备接入、设备管理、安全管理、消息通信、监控运维以及数据应用等。
应用层是物联网的最终目的,其主要是将设备端收集来的数据进行处理,从而给不同的行业提供智能服务。目前物联网涉及的行业众多,比如电力、物流、环保、农业、工业、城市管理、家居生活等,但本质上采用的物联网服务类型主要包括物流监控、污染监控、智能交通、智能家居、手机钱包、高速公路不停车收费、远程抄表、智能检索等。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)