大数据的定义。大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的特点。数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。
大 数据的采集。科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、 GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。大数据时代数据的采集也不再是技术问题,只是面对如此众多的数据,我们怎样才能找到 其内在规律。
大数据的挖掘和处理。大数据必然无法用人脑来推算、估测,或者用单台的计算机进行处理,必须采用分布式计算架构,依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术,因此,大数据的挖掘和处理必须用到云技术。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
大 数据的应用。大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关 的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对, 挖掘主效基因。例子还有很多。
大数据的意义和前景。总的来说,大数据是对大量、动态、能持续的数据,通过运 用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本 质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。
商业智能的技术体系主要有数据仓库(Data Warehouse,DW)、联机分析处理(OLAP)以及数据挖掘(Data Mining,DM)三部分组成。
数据仓库是商业智能的基础,许多基本报表可以由此生成,但它更大的用处是作为进一步分析的数据源。所谓数据仓库(DW)就是面向主题的、集成的、稳定的、不同时间的数据 ,用以支持经营管理中的决策制定过程。多维分析和数据挖掘是最常听到的例子,数据仓库能供给它们所需要的、整齐一致的数据。
在线分析处理(OLAP)技术则帮助分析人员、管理人员从多种角度把从原始数据中转化出来、能够真正为用户所理解的、并真实反映数据维特性的信息,进行快速、一致、交互地访问,从而获得对数据的更深入了解的一类软件技术。
数据挖掘(DM)是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策。
商业智能的应用范围
1采购管理
2财务管理
3人力资源管理
4客户服务
5配销管>>
问题二:什么是大数据 大数据是什么意思 “大数据”不是“数据分析”的另一种说法!大数据具有规模性、高速性、多样性、而且无处不在等全新特点,具体地说,是指需要通过快速获取、处理、分析和提取有价值的、海量、多样化的交易数据、交互数据为基础,针对企业的运作模式提出有针对性的方案。由于物联网和智能可穿戴的普及带来的,生产线上普通的蓝领员工,前台电话员,等企业内的低阶员工也成为产生大数据的数据内容的一部分,数据的产生除了来自社交网络,网站,电子商务网站,邮箱外,智能手机,各种传感器,和物联网,智能可穿戴设备。
大数据营销与传统营销最显著的区别是大数据可以深入到营销的各个环节,使营销无处不在。如用户的偏好?上网的时间段?上网主要浏览页?对页面和产品的点击次数?网站上的用户评价对他的影响?他会在哪些地方分享对产品和购物过程的体验?这些都是对用户网上消费和品牌关注度的深入分析,可以直接影响用户消费的倾向等商业效果。
大数据彻底改变企业内部运作模式,以往的管理是“领导怎么说?”现在变成“大数据的分析结果”,这是对传统领导力的挑战,也推动企业管理岗位人才的定义。不仅懂企业的业务流程,还要成为数据专家,跨专业的要求改变过去领导力主要体现在经验和过往业绩上,如今熟练掌握大数据分析工具,善于运用大数据分析结果结合企业的销售和运营管理实践是新的要求。
当然大数据对企业的作用一个不可回避的关键因素是数据的质量,有句话叫“垃圾进,垃圾出”指的是如果采集的是大量垃圾数据会导致出来的分析结果也是毫无意义的垃圾。此外,企业内部是否会形成一个个孤立的数据孤岛,数据是否会成就企业内某些人或团队新的权力,导致数据不能得到实时有效地分享,这些都会是阻碍大数据在企业中有效应用的因素。
而随着大数据时代的到来,对大数据商业价值的挖掘和利用逐渐成为行业人士争相追捧的利润焦点。业内人士称,电商企业通过大数据应用,可以探索个人化、个性 化、精确化和智能化地进行广告推送和推广服务,创立比现有广告和产品推广形式性价比更高的全新商业模式。同时,电商企业也可以通过对大数据的把握,寻找更 多更好地增加用户粘性,开发新产品和新服务,降低运营成本的方法和途径。
问题三:什么是“大数据”的真正含义 大讲台大数据 在线培训为你解答:大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据 ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
问题四:大数据是什么含义 大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。
问题五:大数据是什么意思 大数据是指整个分析运营的各个方面的数据整合。特别是指互联网带来的整个方方面的物流 信息流 资金流都在数据分析下整合
希望你能接受这个答案。
问题六:大数据是什么意思? 大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 。大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的加工能力,通过加工实现数据的增值。
问题七:大数据的概念是什么意思 什么是大数据概念?
大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
问题八:大数据的含义包括哪些 大数据(英语:Big data[1][2]或Megadata),或称巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。
在总数据量相同的情况下,与个别分析独立的小型数据集(data
set)相比,将各个小型数据 并后进行分析可得出许多额外的信息和数据关系性,可用来察觉商业趋势、判定研究质量、避免疾病扩散、打击犯罪或测定实时交通路况等;这样的用途正是大型数据集盛行的原因。
大数据的应用示例包括大科学、RFID、感测设备网络、天文学、大气学、基因组学、生物学、大社会数据分析、互联网文件处理、制作互联网搜索引擎索引、通信记录明细、军事侦查、社交网络、通勤时间预测、医疗记录、照片图像和视频封存、大规模的电子商务等。
问题九:什么是大数据?有什么意义? 大数据就是大量的数据,通过分析找出他们的规律
问题十:什么是大数据,大数据的意义是什么? 大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。可能得到你想要的数据,里好多这种素材,比如人脸的搜索,人员的定位,人流的分析,运行的状态等等都有使用。现在做这些应用的也很多,只是落地的还稍微少一点。还是为了创造价值。大数据或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
随着人工智能的飞速发展以及广泛落地应用,越来越多的设备将会被植入智能问答技术,人机交互场景随处可见,智能问答在未来将会成为一个非常重要的入口。
腾讯小知凭借着业界领先的智能AI引擎算法和海量大数据仓库,已将智能问答技术落地实施,并且经过大量的业务考验和优化,知识点匹配度和准确率都已达到90%以上,在2018 年 GITC 全球互联网技术大会上,腾讯小知荣获年度互联网最具价值产品奖。
腾讯小知算法负责人陈松坚也在会场发表了关于智能问答技术原理及其在To B场景下的应用的专题演讲,从自己的角度为我们展现智能问答技术的最新成果。
他首先从智能问答是什么,为什么和怎么做的三个问题出发,阐明了他对当前智能问答技术的定位和价值,首先,现阶段的智能问答是信息检索技术的升级,是量变而未达到质变。但是无论在To B还是To C的场景下,当前的技术都能够切实解决一些用户的痛点,提升用户体验,是亟待推进和充满想象的方向。
在回答怎么做这个问题时,他详细介绍了几种不同的问答机器人的实现路径,包括单轮问答机器人,多轮问答机器人及阅读理解机器人。其中重点阐述了单轮问答机器人的实现原理,包括字面匹配,词向量匹配,深度语义匹配,迁移学习等技术。
此后他还分享了小知团队将上述技术产品化的经验,包括智能客服机器人和电话机器人两大块,主要分享了当前产品的形态,亮点和实际项目中取得的一些成果。
最后,他简单总结了小知目前完成的工作以及就智能问答的发展提出了自己的几点看法。
--------------------------------------------------------------
以下是演讲稿全文:
各位下午好,很高兴今天能在这里给大家做分享报告。先介绍一下,我们腾讯小知是致力于为政府和各行业提供一揽子智能问答解决方案的团队,目前已经落地的包括基于文本的智能客服机器人和基于语音的电话机器人等。
在大多数人的认知里,智能问答很可能是以上的3个印象,2011年打败了人类取得问答竞赛冠军的waston;2017年被沙特授予公民身份的机器人sofia;更为大家熟知的钢铁侠中的机器人管家jarvis。在大家心目中,智能就意味着能够像真人一样交流。然而作为从业者,很遗憾地告诉大家,目前的技术还远没有达到这个目标,我认为本质上目前的智能问答技术是对信息检索技术的一次升级,是量变而未到质变。这个皇冠上的明珠还等待我们去摘取。
既然问答技术还不成熟,那为什么还要投身到这个领域呢。我想从To B和To C两个角度去回答。对企业来讲,当前的问答技术虽然无法解答复杂的咨询,但是大部分的简单的头部问题是可以比较好的解答的。从本轮AI大潮NLP赛道的几名种子选手都从智能客服这个方向切入就可以看出企业是确实存在对智能问答的刚性需求。而对普通用户来讲,一方面siri等语音助手每天都在为用户提供便捷的交互界面,另一方面像amazon echo这一类的智能家居产品也逐步进入千家万户,成为物联网生态的中心入口之一,这便是智能问答的价值所在。
那如何实现智能问答机器人呢我们先来看最基本的单轮问答机器人的实现原理。
熟悉搜索引擎的朋友会发现这个架构跟搜索引擎的很类似。单轮问答一般来说就是FAQ问答,是基于业务问答对组成的问答库进行检索匹配。其中FAQ问题集包含多个相似问法供用户问题去匹配。预处理阶段一般会进行文本纠错,标准化和底层NLP特征提取;召回阶段会在倒排索引中召回若干个候选问题(粗排),而最后的匹配阶段会基于各种模型进行匹配打分并返回得分最高的结果(精排)。匹配阶段还会引入其他模块,如知识图谱和拒识模型,目的是辅助提升匹配的最终准确率。
retrieval中的匹配可以看做是naive solution,词袋+VSM, 筛选候选够用了,但是精排需要更精致的策略,第一,要利用监督信息做拟合,我们构建基于问题对的训练语料,拟合是否匹配这个二分类目标。第二,特征上抛弃稀疏的词袋模型,而是构造各种相似度来做base scorer,然后利用非线性的抗噪能力强的xgboost来做融合,比如我们用到词bigram, 字bigram, 核心词,名词等特征集合的相似度。这种方法的优缺点是一体的,由于模型只学习字面相似的特征,因此不受领域影响,通用性强,适合用在冷启动阶段;但也因为只考虑字面相似,无法处理更深层的语义匹配。
那如何度量语义的相似呢。词向量技术的兴起是语义匹配的前提,所谓词向量,是将孤立的传统的token表示映射到相互关联的向量空间中,这种关联性,或者说是相似性,是通过词语的上下文的来描述的。也就是说,上下文越相似的词语,他们的语义就越相似,词向量的欧式距离就越近。这是很容易理解的,更妙的是,通过对向量进行简单加减运算,能够呈现出概念的关系,比如king-man+woman的结果非常接近于queen, 因此说明词向量能够一定程度刻画语义。那对句子如何做向量表示呢一个简单的想法是直接求和平均,WMD是另一个比较有意思且有效的做法,他将计算句子到句子的相似度建模成一个运输的问题,把句子p的各个词,运输到q的各个词上,也可以说是变换;运输成本是词向量的cosine相似度,而要运输的是各个词在句子中的权重,用线性规划求解一个最优解,即为p到q的距离。另外还有个有效的方法是SIF,思路是做词向量加权求和,但是突显出句子中非通用的部分,即权重用词频倒数来计算权重,实验效果也很不错。
上面的方法有一个问题就是没有利用有监督信息,所以效果有明显的天花板。下面介绍这个工作是基于深层网络做有监督学习的匹配的,做法也比较简单,首先把句子文本用one-hot编码,假如词典大小是500K,那编码完长度就是500K维,其实等于是词袋模型,然后输入到一个多层的神经网络去学习,最终得到一个128维的向量作为句子的语义表示,然后用cosine计算两个句子与文档的相似度作为模型输出。这个方法其实是将高维稀疏的token特征映射到低维语义空间,跟词向量的思路很类似,只不过训练目标不同,并且这里使用了深层网络结构。
但是CNN对上下文的处理能力依赖于窗口大小,远距离就没办法处理了,因此要考虑另一种网络单元RNN,这种单元是专门为时序模型量身打造的,简单来说,每一时刻t上的隐藏状态,或者说第t个词上的语义编码,都由两个输入共同决定,即上一时刻的隐藏状态和当前时刻的原始输入,而为了解决远距离传递导致的梯度消失和梯度爆炸等问题,RNN有一些变种结构来应对,比如 LSTM和GRU等。
CNN和RNN都是对原始输入进行语义编码的基本单元,编码后的向量就可以接入多层感知机进行相似度计算,如果是直接计算cosine相似度,那就是dssm的升级版,而更常见的做法是把两个句子的编码向量拼接在一起,再经过一个多层感知机计算相似度,而这种方法统称为表达式建模;
另一种方案考虑到两个句子之间的交互信息对学习他们是否匹配显然更为重要,这一类方案被称为交互式建模,右边是一个典型的例子,他最大的不同是首先对两个句子的所有窗口组合进行拼接和卷积,得到交互信息。然后再进行多次卷积和池化得到表示。其他的交互方式还包括编码之后,进行交互 *** 作,如作差,点乘等,还有计算attention表示,也是常见的交互方式。
下面介绍我们的方案,跟上面介绍的模型相比,我们的方案主要做了两处改动,一个是使用了稠密连接的网络结构,让rnn层的输入和输出拼接在一起做为下一层的输入,第二个是混合注意力机制,即在计算attention向量进行交互式建模的基础上,增加self-attention向量计算,然后把两个attention向量经过门机制进行融合,这样做一方面引入了问句间的交互信息,同时又增强了对自身的表达建模。
上面的模型是比较复杂的模型,参数量有58M。在实际中应用中训练语料会严重不足,为了解决这个问题,我们引入了迁移学习的策略。首先第一种是多任务联合学习,比如在拟合两个问句是否匹配的同时,也对问句进行分类预测;另外还可以同时对匹配的问题对做seq2seq的翻译模型训练。这两个策略都证明能有效提升准确率。
而另一个思路更加直观,即引入其他领域的语料,所谓多语料迁移。Fine-tune即参数微调是其中一种做法,即先用通用语料训练网络,固定底层表达层的参数,然后再使用领域语料调整上层参数;另一种思路参考了对抗学习的思想,即引入一个新的任务“混淆分类器”去判别当前样本是来自源语料还是目标语料,通过在损失函数中增加反向的混淆分类损失项,让混淆分类器尽可能地无法区分样本的来源,从而保证共享了参数的表达网络能够学习到两部分语料中共性的部分。
以上的介绍都是为了完成一个基本的单轮对话机器人,而实际应用中,往往存在需要需要交互的场景,比如查询社保余额,就需要用户提供指定信息,如姓名,身份z号,手机号等。这种是所谓任务导向型机器人,而另一种,基于知识图谱的机器人也往往会涉及到多轮交互。这里简单介绍一下多轮对话机器人的架构,整体上是一个对话管理系统,总的来说是管理会话状态,包含4个模块,分别是输入部分:自然语言理解模块NLU,负责意图识别和抽取槽位实体,比如这里匹配到了意图是查询社保余额,抽取到了社保号1234。得到的意图和槽位值会送入到对话状态追踪模块,DST,他负责会话状态的更新,形式化来说是一个函数,输入是当前状态s和当前的query经过NLU处理过得到的意图和槽位值q, 输出新的状态s‘,下一步是把s’送入DPL,对话策略模块,这个模块是根据新的状态s‘输出行动a,通常这个决策选择会依赖于一个外部数据库或知识图谱,最后,由输出部分,自然语言生成模块NLG负责将行动转换为自然语言文本,返回给用户。
前面提到的单轮FAQ机器人,有一个问题是问答准确率依赖于问答库的质量,而问答库的构建耗时费力,所以针对数据较大的非结构化文档,如果可以直接从中抽取答案,是非常理想的做法。比如斯坦佛大学开源的drQA,就是基于wikipedia的语料做的一个开放域上的问答机器人,我们来看看这种阅读理解机器人的架构示意,他也是基于检索重排的思路,首先把可能的文段从语料库中摘取出来,然后送入阅读理解模型进行答案定位,打分,排序和选择得分最高的答案。阅读理解模型与匹配模型是类似的,需要先对问题和候选文段进行编码表示,不同之处在于最终预测的目标是答案的起始和结束位置。我所在的团队在去年,在阅读理解的权威公开测评Squad v1中取得过第一的成绩,同时参加这个测评的包括了google, facebook, 微软,阿里idst, 科大讯飞等国内外同行。说明业界对这种技术还是非常看重的。
下面分享小知在把以上技术落地产品化的经验。首先我们来看看小知的整体架构图,核心引擎有两部分,一块是上面重点阐述的深度语义匹配模型,另一块是本次分享没有展开的知识图谱引擎,在此之上,我们构建了FAQ机器人,多轮会话机器人(任务机器人),闲聊机器人等。以下是我们单轮和多轮机器人的示例。
在我们实际的落地项目中,得益于深度迁移模型的语义匹配能力和行业知识图谱的的精准匹配和辅助追问,小知机器人能够做到95%左右的问答准确率,并且节省了50%以上的服务人力,切实为政府和企业提升效率和降低成本。
在智能客服的基础上,我们又打造了基于语音的电话机器人,力主融合智能客服,人工在线客服,工单系统和电话机器人,为客户打造从售前售中售后的整体解决方案。
以下是电话机器人的整体架构图,核心是自然语言理解NLU模块,负责识别用户提问意图
提取相关实体。根据NLU输出的结果,内置的对话管理引擎会进行流程状态流转和跟踪。
另外,ASR语音识别和TTS语音合成是不可或缺的重要服务,这三个模块相互协作,共同完成与用户的交互。
最后对智能问答的未来发展提几点我的看法。目前学术界比较公认的一个方向是,需要更有机地结合模型和规则,而在问答领域,规则的一大组成部分就是知识图谱,包括开放领域的知识图谱和专业领域知识图谱。而更进一步地,我们需要研究带有推理性质的事理型知识图谱去描述领域内的规则和知识,让机器人能够处理带有复杂条件的问题,提供更智能的回复。在我看来,智能问答的一个突破口就在于解决以上三个问题。以上就是今天分享的内容,谢谢大家。
主讲人介绍:
陈松坚,腾讯数据平台部算法高级研究员,有着8 年的 NLP 研发经验,2017 年加入腾讯 TEG 数据平台部,负责智能客服产品腾讯小知的算法规划和落地。负责过多个智能客服项目,对封闭领域的智能问答有丰富的实战经验。
· 题名(Title,Topic)题名又称题目或标题。题名是以最恰当、最简明的词语反映论文中最重要的特定内容的逻辑组合。论文题目是一篇论文给出的涉及论文范围与水平的第一个重要信息,也是必须考虑到有助于选定关键词不达意和编制题录、索引等二次文献可以提供检索的特定实用信息。论文题目十分重要,必须用心斟酌选定。有人描述其重要性,用了下面的一句话:“论文题目是文章的一半”。 对论文题目的要求是:准确得体:简短精炼:外延和内涵恰如其分:醒目。
· 作者姓名和单位(Author and department)
这一项属于论文署名问题。署名一是为了表明文责自负,二是记录作用的劳动成果,三是便于读者与作者的联系及文献检索(作者索引)。大致分为二种情形,即:单个作者论文和多作者论文。后者按署名顺序列为第一作者、第二作者……。重要的是坚持实事求是的态度,对研究工作与论文撰写实际贡献最大的列为第一作者,贡献次之的,列为第二作者,余类推。注明作者所在单位同样是为了便于读者与作者的联系。 (三)摘要(Abstract) 论文一般应有摘要,有些为了国际交流,还有外文(多用英文)摘要。它是论文内容不加注释和评论的简短陈述。其他用是不阅读论文全文即能获得必要的信息。摘要应包含以下内容:①从事这一研究的目的和重要性;②研究的主要内容,指明完成了哪些工作;③获得的基本结论和研究成果,突出论文的新见解;④结论或结果的意义。
· 关键词(Key words)
关键词属于主题词中的一类。主题词除关键词外,还包含有单元词、标题词的叙词。 主题词是用来描述文献资料主题和给出检索文献资料的一种新型的情报检索语言词汇,正是由于它的出现和发展,才使得情报检索计算机化(计算机检索)成为可能。 主题词是指以概念的特性关系来区分事物,用自然语言来表达,并且具有组配功能,用以准确显示词与词之间的语义概念关系的动态性的词或词组。 关键词是标示文献关建主题内容,但未经规范处理的主题词。关键词是为了文献标引工作,从论文中选取出来,用以表示全文主要内容信息款目的单词或术语。一篇论文可选取3~8个词作为关键词。
关键词或主题词的一般选择方法是由作者在完成论文写作后,纵观全文,先出能表示论文主要内容的信息或词汇,这些住处或词江,可以从论文标题中去找和选,也可以从论文内容中去找和选。例如上例,关键词选用了6个,其中前三个就是从论文标题中选出的,而后三个却是从论文内容中选取出来的。后三个关键词的选取,补充了论文标题所未能表示出的主要内容信息,也提高了所涉及的概念深度。需要选出,与从标题中选出的关键词一道,组成该论文的关键词组。
关键词与主题词的运用,主要是为了适应计算机检索的需要,以及适应国际计算机联机检索的需要。一个刊物增加“关键词”这一项,就为该刊物提高“引用率”、增加“知名度”开辟了一个新的途径。
(五)引言(Introduction)
引言又称前言,属于整篇论文的引论部分。其写作内容包括:研究的理由、目的、背景、前人的工作和知识空白,理论依据和实验基础,预期的结果及其在相关领域里的地位、作用和意义。
引言的文字不可冗长,内容选择不必过于分散、琐碎,措词要精炼,要吸引读者读下去。引言的篇幅大小,并无硬性的统一规定,需视整篇论文篇幅的大小及论文内容的需要来确定,长的可达700~800字或1000字左右,短的可不到100字。
大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。
一、大数据建设思路
1)数据的获得
大数据产生的根本原因在于感知式系统的广泛使用。随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。
2)数据的汇集和存储
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了
数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。 数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。
3)数据的管理
大数据管理的技术也层出不穷。在众多技术中,有6种数据管理技术普遍被关注,即分布式存储与计算、内存数据库技术、列式数据库技术、云数据库、非关系型的数据库、移动数据库技术。其中分布式存储与计算受关注度最高。上图是一个图书数据管理系统。
4)数据的分析
数据分析处理:有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。大数据的处理类型很多,主要的处理模式可以分为流处理和批处理两种。批处理是先存储后处理,而流处理则是直接处理数据。挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。
5)大数据的价值:决策支持系统
大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社会管理的职责。
6)数据的使用
大数据有三层内涵:一是数据量巨大、来源多样和类型多样的数据集;二是新型的数据处理和分析技术;三是运用数据分析形成价值。大数据对科学研究、经济建设、社会发展和文化生活等各个领域正在产生革命性的影响。大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。
二、大数据基本架构
基于上述大数据的特征,通过传统IT技术存储和处理大数据成本高昂。一个企业要大力发展大数据应用首先需要解决两个问题:一是低成本、快速地对海量、多类别的数据进行抽取和存储;二是使用新的技术对数据进行分析和挖掘,为企业创造价值。因此,大数据的存储和处理与云计算技术密不可分,在当前的技术条件下,基于廉价硬件的分布式系统(如Hadoop等)被认为是最适合处理大数据的技术平台。
Hadoop是一个分布式的基础架构,能够让用户方便高效地利用运算资源和处理海量数据,目前已在很多大型互联网企业得到了广泛应用,如亚马逊、Facebook和Yahoo等。其是一个开放式的架构,架构成员也在不断扩充完善中,通常架构如图2所示:
Hadoop体系架构
(1)Hadoop最底层是一个HDFS(Hadoop Distributed File System,分布式文件系统),存储在HDFS中的文件先被分成块,然后再将这些块复制到多个主机中(DataNode,数据节点)。
(2)Hadoop的核心是MapReduce(映射和化简编程模型)引擎,Map意为将单个任务分解为多个,而Reduce则意为将分解后的多任务结果汇总,该引擎由JobTrackers(工作追踪,对应命名节点)和TaskTrackers(任务追踪,对应数据节点)组成。当处理大数据查询时,MapReduce会将任务分解在多个节点处理,从而提高了数据处理的效率,避免了单机性能瓶颈限制。
(3)Hive是Hadoop架构中的数据仓库,主要用于静态的结构以及需要经常分析的工作。Hbase主要作为面向列的数据库运行在HDFS上,可存储PB级的数据。Hbase利用MapReduce来处理内部的海量数据,并能在海量数据中定位所需的数据且访问它。
(4)Sqoop是为数据的互 *** 作性而设计,可以从关系数据库导入数据到Hadoop,并能直接导入到HDFS或Hive。
(5)Zookeeper在Hadoop架构中负责应用程序的协调工作,以保持Hadoop集群内的同步工作。
(6)Thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发,最初由Facebook开发,是构建在各种编程语言间无缝结合的、高效的服务。
Hadoop核心设计
Hbase——分布式数据存储系统
Client:使用HBase RPC机制与HMaster和HRegionServer进行通信
Zookeeper:协同服务管理,HMaster通过Zookeepe可以随时感知各个HRegionServer的健康状况
HMaster: 管理用户对表的增删改查 *** 作
HRegionServer:HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据
HRegion:Hbase中分布式存储的最小单元,可以理解成一个Table
HStore:HBase存储的核心。由MemStore和StoreFile组成。
HLog:每次用户 *** 作写入Memstore的同时,也会写一份数据到HLog文件
结合上述Hadoop架构功能,大数据平台系统功能建议如图所示:
应用系统:对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。
数据平台:借助大数据平台,未来的互联网络将可以让商家更了解消费者的使用惯,从而改进使用体验。基于大数据基础上的相应分析,能够更有针对性的改进用户体验,同时挖掘新的商业机会。
数据源:数据源是指数据库应用程序所使用的数据库或者数据库服务器。丰富的数据源是大数据产业发展的前提。数据源在不断拓展,越来越多样化。如:智能汽车可以把动态行驶过程变成数据,嵌入到生产设备里的物联网可以把生产过程和设备动态状况变成数据。对数据源的不断拓展不仅能带来采集设备的发展,而且可以通过控制新的数据源更好地控制数据的价值。然而我国数字化的数据资源总量远远低于美欧,就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这降低了数据的价值。
三、大数据的目标效果
通过大数据的引入和部署,可以达到如下效果:
1)数据整合
·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;
·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;
·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。
2)数据质量管控
·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;
·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。
3)数据共享
·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;
·以实时或准实时的方式将整合或计算好的数据向外系统提供。
4)数据应用
·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;
·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;
·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。
四、总结
基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。
时序数据库(TSDB) 是一种数据库管理系统,用于存储、处理和分析时间序列数据(以下简称时序数据)。
时序数据是按时间维度顺序记录且索引的数据。像智慧城市、物联网、车联网、工业互联网等领域各种类型的设备和传感器都会产生海量的时序数据,证券市场的行情数据也是时序数据,这些数据将占世界数据总量的 90% 以上。
虽然你也可以使用关系数据库或 NoSQL 数据库来处理时序数据,但这类数据库并没有充分利用时序数据的特点,性能提升极为有限,只能依靠集群技术,投入更多的计算资源和存储资源来处理,系统的运营维护成本急剧上升。而专门构建的时序数据库,如TDengine,充分利用了时序数据库的特点,大幅提升了数据的写入和查询速度,同时也大幅提高了数据压缩率。此外,时序数据库包含专有的时序数据分析功能和数据管理功能,使用户可以很轻松地开发应用程序。
TDengine是一款开源、云原生的时序数据库(Time Series Database),专为物联网、工业互联网、金融、IT 运维监控等场景设计并优化,具有极强的d性伸缩能力。同时它还带有内建的缓存、流式计算、数据订阅等系统功能,能大幅减少系统设计的复杂度,降低研发和运营成本,是一个极简的时序数据处理平台。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)