从2017年和2019年Gartner将数字孪生(Digital Twin)作为十大战略性技术发布以来,数字孪生正在从虚拟产品生命周期管理、工业物联网专业技术,发展为企业数字化的核心通用技术。作为企业数字化通用技术,数字孪生为企业的运营创新、产品与服务创新、商业模式创新、管理创新带来了新的机会,本文结合PLM、工业互联网及企业领域数字孪生技术的发展演进探讨如何规划和实施企业数字孪生战略。
数字孪生的技术演进:从虚拟产品技术到数字化战略技术
2021年上海车展特斯拉车主维权事件中,特斯拉分别向市场监管部门、维权的张女士发送了整理为Excel表格的48页6697组后台服务器数据,详细记录了车主在事故前30分钟的车辆状况和驾驶动作。
特斯拉的用户不仅可以通过特斯拉的数字孪生追溯设备的过去和当前使用状况,还可以发现,在使用过程中,特斯拉 汽车 的功能似乎越来越智能,特斯拉 汽车 似乎会越来越懂你。特斯拉通过数字孪生给用户提供了一种“持续智能”,可以持续适配用户、持续优化。特斯拉通过这种服务,每年可以从每辆特斯拉获得超过1200美元的收入。
要构建类似特斯拉这样的数字化产品、服务和商业模式,首先需要理解数字孪生技术的由来、发展及持续演进。数字孪生迄今经历了三个演进阶段:
1、虚拟产品管理发展阶段
2003年迈克尔·格里夫斯(Michael Greives)第一次提出将数字孪生(Digital Twin) 作为PLM的一个概念模型,将虚拟产品纳入PLM的管理范畴,重新定义了PLM。到2011年NASA将“数字孪生”(Digital Twin)列入美国航空航天发展规划,这个阶段是数字孪生的概念形成阶段。这个阶段数字孪生主要被定位为下一代PLM系统的“虚拟完美模型”(Virtually perfect Model)。
2、工业互联网发展阶段
2011年以来,GE公司发布雄心勃勃的工业互联网计划,随后,在GE和西门子、PTC等公司的倡导和支持下,数字孪生作为工业互联网的核心技术得到了前所未有的重视,这个阶段,无论是GE、PTC还是西门子,都不仅将数字孪生用于CAD、CAE、PLM等虚拟产品系统工程,还在设备(APM)、过程控制、网络等工业互联网各个领域以数字孪生和数字主线作为核心技术支持,各个厂商分别发布了设备、网络、过程、产品、生产、运营等不同应用场景数以百万计的数字孪生体。数字孪生通过工业互联网的发展进入到商用阶段,不过迄今大约只有1%的企业资产应用了数字孪生技术。
3、数字化战略技术发展阶段
2017年Gartner将数字孪生列入10大战略技术趋势,数字孪生从工业互联网的核心技术进一步发展为基于物联网的智慧城市和企业数字化的核心战略技术。数字孪生作为战略技术,从复杂系统工程(iMBSE)和工业互联网等特定领域发展为智慧城市和企业的数字化基础设施。Gartner数字孪生分为离散数字孪生、组合数字孪生、组织数字孪生三个基本类型。产品数字孪生也好,设备数字孪生也好,实际都是一种离散的数字体,这样的数字孪生的作用是局部的,Gartner的建议实际是将这种离散的数字孪生能力“组装”起来,打造具备特定的业务模式和运营模式的组织数字孪生(DTO),让企业具备数字孪生的持续智能能力。这样,数字孪生就成为企业数字化的一种核心战略技术。
数字孪生实施路线:从离散可视、数据驱动到持续智能
数字孪生的概念虽然出现已久,但是在企业数字化转型中的应用还刚刚开始,即使引入数字孪生的企业也还处于试点和 探索 阶段。但是在未来一年内,65%的大型企业都表示会投入启动数字孪生项目。未来两到三年,是企业数字孪生建设的战略机遇期,有的放矢的拟定数字孪生战略,无疑将获得先行优势。
目前推行数字孪生的制造企业,基本有两条战略实施路线,一条是从产品数字孪生开始,基于产品数字孪生,实现虚拟样机、虚拟仿真,缩短产品研发周期,降低产品研发成本。典型代表是中车集团如中车株机;一条是设备和车间数字孪生开始,基于设备和车间数字孪生,实现透明化的装备生产、运维和服务。典型代表是树根互联参与的三一重工8号工厂;
从企业战略发展角度,为了实现通过数字孪生构建未来的竞争优势,企业的数字孪生的战略可以按照四个步骤展开:
1、第一阶段:实现离散数字孪生的连接与可见
离散数字孪生,是实现设备、人员等单一的资源数据连接和数据可视以实现资源优化的单一数字孪生体。这一阶段,基于边缘网络技术、设备及资源管理系统,通过选定的设备、流程、系统的数字化连接和数据采集、数字化标识、数字化监测,实现数字化设备、流程和系统的诊断、描述性分析和预测;目前在不少企业推行的RPA(流程机器人)其实也是一种离散数字孪生的应用。设备的离散数字孪生未来将主要通过设备供应商提供;流程的离散数字孪生主要通过应用软件服务商提供;
2、第二阶段:实现复合数字孪生的互联与数据驱动
复合数字孪生是基于内部离散数字孪生和外部数据资源复合而成的数字孪生体,如一条产线,一个端到端的服务线。数字孪生的复合过程不是简单的数据互通,包括基于 历史 数据的机器学习和模型训练、基于实时数据的模型实时运行和监测。所以复合数字孪生的能力是需要通过一个包括AI和大数据能力在内的物联网平台实现的。符合数字孪生一般通过企业个性化定制实现。
3、第三阶段:实现企业数字孪生的数据驱动与持续智能
企业数字孪生(DTO)重点是面向企业全流程,通过数据孪生监测和驱动的业务运行,形成一种可以持续自动采集、自动分析、自主执行、自主决策的数据驱动闭环。在2020年的战略技术趋势预测中,Gartner提出了一个“持续智能”的新概念刚好可以解释企业数字孪生的价值。持续智能指的是基于数字化在线平台实时获取数据流,实时进行情景分析并给出响应方案,实现决策与运营的一体化。企业数字孪生的的建设是一个系统工程,基本的建设内容包括全价值链的数据获取、模型构建、数据监测及支持持续智能的数据与分析平台建设。这种需求很多企业都是存在的,不过大多数企业因为不了解企业数字孪生的概念,可能将这个项目简单等同于大数据中心。
4、第四阶段:实现数字孪生的生态服务与价值共生
将产业上下游的数字孪生组织集合起来,就成为以链主为核心的产业数字孪生,如 汽车 制造商上下游数字孪生体集合起来就可以构成一个包括消费者、供应商、4S店及 社会 服务资源在内的 汽车 产业数字孪生。产业数字孪生将改变传统的产业协同关系,衍生出全新的基于数据和智能的生他服务和价值共生模式。个性化订制、网络化协同最终将体现在客户参与数字孪生、生态伙伴共享产业数字孪生的价值。
数字孪生的创新策略:模型驱动、架构引领, 探索 中前进
从离散数字孪生,复合数字孪生到企业数字孪生、生态数字孪生,数字孪生在企业的应用深度不断加深、实施的复杂性和应用的难度也会逐级加大。在实施的过程中必然面临不确定的风险,在行业内实际还缺少行之有效的数字孪生实施方法。
在复杂系统工程领域,有基于模型的系统工程方法(iMBSE)对产品定义、领域建模与仿真给出了方法论指导;
在虚实融合的数字化方法论层面,德国工业40参考架构、中美工业互联网参考架构也已经发表了发表了相关的架构框架。
但是在企业数字孪生领域,在面向企业运营和流程优化领域,原有的BPM(业务流程管理)的方法论已经不能支持模型驱动、虚实融合的数字化业务模式和运营模式创新需求,企业需要新的业务和运用模式优化方法论。
作者:金蝶软件(中国)有限公司
组稿:李艾离
本文内容仅代表作者观点,不构成购买或投资建议。
物联网与各种网络的关系物联网(InternetofThings)的概念最早在1998年由美国MIT大学的KevinAshton教授提出,把RFID技术与传感器技术应用于日常物品中形成物联网,着重的是物品的标记。2005年ITU以InternetofThings为题发布互联网报告,强调物品联网。近年随着移动互联网技术和云计算技术的发展,特别是节能环保和社会安全等需求,物联网再度受到关注,但聚焦在通过感知达到智能服务的目的。在2010年我国的政府工作报告所附的注释中对物联网有如下的说明:是指通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪、监控和管理的一种网络。它是在互联网基础上延伸和扩展的网络。
传感网使用传感器作为感知元件,应用上可以无需基础网络,通常也不强调智能分析与决策。物联网使用传感器、RFID、激光扫描器、红外标记、普通条码、二维码、全息光学条码、GPS等作为感知元件,需要通过基础网络实现物与物和人与物互联,强调对感知数据的汇聚和挖掘及分析决策。物联网的组成包括三部分,即泛在化的传感节点及网络、异构性的网络基础设施、普适性的数据分析与服务。物联网与传感网的区别不在于联网的物件数量而在于感知单元的多样性和感知结果的智能利用,可以说传感网是物联网的一个子集。
物联网的底层借助RFID和传感器等实现对物件的信息采集与控制,通过传感网将传感器等感知节点的信息汇集,并连到核心网络,基础网络是物联网的重要组成部分,用于承载物物互联或物与人互联的信息传递,物联网的上层实现信息的处理和决策支持。物联网可用的基础网络可以有很多种,通常互联网最适合作为物联网的基础网络。尽管下一代互联网将以支持物联网的应用作为主要目标之一,但物联网并不是互联网的下一代,物联网可以说是互联网上的一种业务或应用。物联网强调的是认知,是互联网向感知平台和数据挖掘两个方向的拓展。物联网与互联网上传统业务相比有不同的特点:在物联网以公众网络(例如互联网)作为基础网络平台的情况下,物联网相当于互联网上面向特定任务来组织的专网()。互联网是全球性的,但物联网往往是行业性的或区域性的,物联网的行业应用的多样性与承载平台的通用性之间需要有中间件来适配。
M2M(Machine-to-Machine)与物联网有关,M2M通信与物联网的核心理念一致,不同之处是物联网的概念和所采用的技术及应用场景更宽泛,M2M主要聚焦在无线通信网络应用上,是物联网应用的一种主要方式。与物联网有关的还有CPS(CyberPhysicalSystem),CPS是计算、通信与物理过程的综合,CPS与物联网有类似的能力,物联网通过数据挖掘可得到决策建议,但通常是要上报主管人员再决定是否要采取措施,而CPS强调循环反馈,要求系统能够在感知物理世界之后通过通信与计算再自动执行对物理世界的反馈控制措施。从物与物通信进一步扩展到物与人以及人与人通信,支持个人和/或设备无论何时、何地、何种方式以最少的技术限制接入到服务和通信的能力,这种网络发展的愿景被称为泛在网。
在物联网上所用的通信技术比较成熟,但仍需要考虑物联网节点多功率小且需要接力传送等特点进行适配。
物联网通常有很多传感器节点,在传感过程中,首先是需要识别被感知的对象和感知信息。在给定任务的情况下使用最少数量的节点并最省功耗是物联网设计的目标。节点的传输距离、节点的合理分层分簇、拓扑控制等一系列节点的几何布局,是物联网感知层面设计的主要问题。根据应用和服务对物联网节点分群分簇,每簇会有一个节点负责搜集数据并将集合的数据传到网关,簇头的选择需要考虑节点的存储、过滤和聚合能力,为了不致过早耗掉簇头的电能,每簇内各节点可能需要轮流担任簇头。由于物联网节点数量密集,覆盖范围宽,而且新的物品的加入将要求节点添加或删除等,在节点的配置上要从减少安装和维护成本考虑,要尽可能少用人工干预,其次是网络发现技术,要求节点能够发现在其所处环境内的相邻节点的存在和身份,以便协商分享的任务,在物联网中网络是动态变化的,新的物品的加入将改变网络的拓扑,而且物品的特征还会随自治程度而变,物联网应具有基于智能匹配来对网中的节点自动发现和指配、自动部署与激活、解除激活和性能监视,还可以在任何时间对所分配的作用进行调整和调度。
有些节点由于制造的不一致,缺陷需要在出厂前校正,由于环境影响、老化等原因使所感知的数据有偏差,还需要在数据收集时校正或去除,还需要考虑传感器与环境之间的耦合关系。在感知数据的报送方式上,分为主动式和反应式两种。物联网收集的数据如果原封不动地存储将占用海量存储资源,必须通过压缩去掉重复冗余的数据,并且需要开发图像信息检索方法和搜索引擎,以有效提高物联网设施的利用效率。收集的数据不限于被感知物件的信息,还包括与事件的发生可能有相关性的政府数据、市民产生的数据等,要在认证安全、隐私保护等方面对数据进行过滤与正确性的确认。为了全面准确提供智能决策,希望有多源甚至异构的数据,通过多数判决和推理分析,去逼近真实环境,最后利用专家系统和数学模型,参考历史数据,综合异构来源的多种信息,进行分析推理,给出决策。
物联网需要有网管,控制物联网节点的休眠和叫醒,检测和登记节点的移动、发现相邻节点,并且在一个特定区域内均衡和调度传感任务等。需要关注物联网能量获取与存储及节能问题,实现能量测量和电量不足的预报以及动态功率优化等能量管理。从安全与隐私来看,物联网是双刃剑,它能对生产安全、反恐维稳和家居安全起积极作用,但如果感知数据偏差太大和判决失误,将弄巧反拙,因此对物联网的可靠性和安全及隐私需要足够重视。
物联网是两化融合的切入点,也是民生服务的新亮点,其应用面很宽,将带动新的产业特别是现代服务业的发展,其社会效益高于经济效益。物联网看似门槛不高,但如何在给定任务的情况下最大化网络的生命周期和最小化组网及应用成本均是严峻的挑战。低成本、高可靠、长寿命的传感器和RFID是物联网推广应用的前提,数据挖掘与智能分析是体现物联网效益的关键,也是物联网的薄弱环节。当前对物联网的理论和技术的研究还落后于应用示范,未来需要在物联网技术方面加大创新开发力度。同时还要重视统筹规划、资源共享,务求实效。1、物联网(英文:InternetofThings,缩写:IoT)起源于传媒领域,是信息科技产业的第三次革命。物联网是指通过信息传感设备,按约定的协议,将任何物体与网络相连接,物体通过信息传播媒介进行信息交换和通信,以实现智能化识别、定位、跟踪、监管等功能。
2、在物联网应用中有两项关键技术,分别是传感器技术和嵌入式技术。
3、物联网的应用仍然存在成本、技术、政策、用户壁垒等瓶颈,从目前情况来看,环保、安防、智能交通、农业、医疗推广的可能性最大,而企业和个人的物联网应用的普及仍然需要较长时间。虽然未来物联网将拓展到智能家居、智能交通、智能医疗等各个领域,但现在还没到广泛应用的时候,估计在中国还得需要几年的时间。物联网产业的兴起,不能跟风无序地发展。当前,我国还处于发展初期阶段,各个产业链还缺少一定的行业标准,RFID应用产业市场密钥体系独自为政,国内也缺少统一的行业标准,每家企业生产的产品绝大多数是不通用的,包括刚刚兴起的手机一卡通,电信、移动、联通三家采用的是不同的技术标准,即使同一家运营商采购的标准也不尽完全相同;因此物联网产业的兴起,更多的需要政府部门引导整个产业链出台更多行业技术标准,以规范各个产业的生产、研发秩序。它俩是密不可分的,物联网的物联源头是嵌入式系统。嵌入式系统诞生于嵌入式处理器,距今已有30多年历史。早期经历过电子技术领域独立发展的单片机时代,进入21世纪,才进入多学科支持下的嵌入式系统时代。从诞生之日起,嵌入式系统就以“物联”为己任,具体表现为:嵌入到物理对象中,实现物理对象的智能化。
基础上的嵌入式应用系统,嵌入到物理对象中,给物理对象完整的物联界面。与物理参数相联的是前向通道的传感器接口;与物理对象相联的是后向通道的控制接口;实现人-物交互的是人机交互接口;实现物-物交互的是通信接口。
物联网时代的大数据策略
互联网时代,PC、Pad、智能手机等设备无处不在,数以亿计的用户通过微博、微信、SNS、博客等途径产生大量的自媒体数据,电商、新闻类网站、搜索引擎每时每刻都在记录着丰富的用户行为信息,海量的数据促进了云计算,分布式技术的发展,而这些技术反过来不仅推动了Web和移动互联网的革新,也推动了物联网的飞速前进。现在,我们正逐渐迈入物联网时代,实现万物互联的愿景,如果说之前人是信息生产的主体,那么或许不久的将来设备将成为主角,它们将源源不断地产生与人相关的衣食住行信息,这些信息会通过云计算、数据挖掘等技术实现价值的升华从而为用户提供更优质、贴心的服务。那么物联网时代会产生什么样的数据,应该采用什么样的大数据策略呢?
THINKstrategies 的总经理 Jeff Kaplan 在自己的博文《 当物联网遇见大数据 》中写道:
“你不能使用现在的策略,因为可以被捕获、管理并利用的数据将更加多样化,同时用例也会更加丰富。附加到各种设备和对象上的传感器会产生各种类型的数据。这些数据将会用于各种响应式的、主动的或者 创造性的目的 。IT部门的任务就是与业务部门一起工作,完全理解物联网方面的用例,然后寻找满足业务需求的技术。特别是,IT部门必须识别出最优的分析平台和工具,让业务用户能够获取到需要的数据,分析数据的含义并快速地做出响应。”
Gartner公司的副总裁、著名分析师 Joe Skorupa 认为:
“分布在世界各地的物联网设备将产生大量的输入数据,将所有的数据传送到一个位置进行处理无论从技术上还是从经济上都是无法实现的。最近的趋势——将应用程序集中起来以便于降低成本并增强安全性——并不适合物联网。组织必须将数据集中到多个分布式的小型数据中心中,在此对数据进行初步的处理并发送到一个中心站点进行额外的处理。数据中心管理员需要在这些区域部署更加具有前瞻性的容量以满足业务发展的需要。”
Patrick McFadin则在自己的博文《 物联网:数据都去了哪里? 》中阐述了一个具体的数据策略解决方案。他认为整个过程可以分为三个阶段:产生数据并通过Internet传递、中央系统收集并组织数据、持续的数据分析与使用。
第一阶段需要决定数据创建的标准以及如何通过网络进行传递。Patrick McFadin认为可以通过>
以上是小编为大家分享的关于物联网时代的大数据策略的相关内容,更多信息可以关注环球青藤分享更多干货
行业主要企业:大富科技(300134)、梦网集团(002123)、共进股份(603118)、胜宏科技(300476)、润和软件(300339)、立昂技术(300603)
本文核心数据:中国物联网市场规模、中国物联网区域竞争情况
行业概况
1、定义
所谓“物联网”(Internet of
Things,IOT),又称传感网,指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来并形成一个可以实现智能化识别和可管理的网络。
早期的物联网是指依托射频识别技术的物流网络,随着技术和应用的发展,物联网的内涵已经发生了较大的变化。现阶段,物联网是指在物理世界的实体中部署具有一定感知能力、计算能力和执行能力的各种信息传感设备,通过网络设施实现信息传输、协同和处理,从而实现广域或大范围的人与物、物与物之间信息交换需求的互联。物联网依托多种信息获取技术,包括传感器、射频识别(RFID)、二维码、多媒体采集技术等。物联网的几个关键环节可以归纳为“感知、传输、处理”。
2、产业链剖析:共有四大层面
所谓产业链,是以生产相同或相近产品的企业集合所在产业为单位形成的价值链,是承担着不同的价值创造职能的相互联系的产业围绕核心产业,通过对信息流、物流、资金流的控制,在采购原材料、制成中间产品以及最终产品、通过销售网络把产品送到消费者手中的过程中形成的由供应商、制造商、分销商、零售商、最终用户构成的一个功能链结构模式。
从产业链条来看,物联网的产业链条由上而下可以分为感知层、传输层、平台层和应用层四个层级。
自2018年中美贸易摩擦以来,美国加大了对中国高新技术出口的限制,不断扩大实体清单,影响了中国一些科技主导型企业的发展,这从侧面警示了中国在全球供应链中地位的脆弱性。物联网通过传感器把物理世界与数字世界联系起来,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。其中传感器作为数据采集的源头,已经成为各种应用能力所需的数据来源所在。目前中国国内也涌现出了一些传感器芯片重点生产企业,如:高德红外、西人马、士兰微、敏芯微电子、博通、全志科技、大唐微电子、复旦微电子等。
行业发展历程:处于市场验证期
物联网是通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等 信息传感设备,按约定的协议,把任何物体与因特网连接起来,进行信息交换
和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。物联网发 展历史悠久,可分为三个阶段:
行业政策背景:政策大力推进
“十三五”以来,国家重视物联网产业建设及物联网成果应用,出台多度政策意见来推动物联网产业发展。在“十三五”以来发布的行业政策中,以推动物联网成果应用为主,利用物联网技术加强信息交换、提高监督管理水平等。
根据最新发布的《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》,在“十四五”期间,明确新基建,还要让5G用户普及率提高到56%。并且5次提到关于物联网的规划发展,除了划定数字经济的7大重点产业外,其余4次提到的场合均体现出对物联网发展重点的表述。
十四五规划中划定了7大数字经济重点产业,包括云计算、大数据、物联网、工业互联网、区块链、人工智能、虚拟现实和增强现实,这7大产业也将承担起数字经济核心产业增加值占GDP超过10%目标的重任。
发展现状
1、中国物联网连接数快速增长
全球物联网仍保持高速增长。物联网领域仍具备巨大的发展空间,根据GSMA发布的《The mobile economy
2020(2020年移动经济)》报告显示,2019年全球物联网总连接数达到120亿,预计到2025年,全球物联网总连接数规模将达到246亿,年复合增长率高达13%。我国物联网连接数全球占比高达30%,2019年我国的物联网连接数363亿。而根据2021年9月世界物联网大会上的数据,2020年末,我国物联网的数量已经达到453亿个,预计2025年能够超过80亿个。
2、应用层与平台层价值最高
从产业链价值分布看,应用层和平台层贡献最大的附加值,分别占到35%左右,传输连接层虽然重要,但产值规模较小;底层的感知层元器件由于种类众多,产业价值也较大,占到20%左右。
3、传输层产业结构中传输层占比最高
根据赛迪发布的《2019-2021年中国物联网市场预测与展望数据》,物联网的传输层依旧位居最大份额;随着大规模地方性物联网政策的落实陆续完成,支撑层增长速度放缓;而随着各领域市场需求的释放,平台层、应用层市场增长速度将持续呈上升趋势。
4、中国物联网市场规模突破25万亿
目前,物联网已较为成熟地运用于安防监控、智能交通、智能电网、智能物流等。近几年来,在各地政府的大力推广扶持下,物联网产业逐步壮大。再加之近几年厂商对物联网这一概念的普及,民众对物联网的认知程度不断提高,使得我国物联网市场规模整体呈快速上升的趋势。2019年我国物联网市场规模约在176万亿元左右,2020年根据赛迪公布的数据,我国物联网市场规模约达到214万亿元左右;预计未来三年,中国物联网市场规模仍将保持18%以上的增长速度。中国物联网市场投资前景巨大,发展迅速,在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。
行业竞争格局
1、区域竞争:北京物联网相关项目最多
截至2021年5月底,工信部共公开2批《物联网关键技术与平台创新类、集成创新与融合应用类项目公示名单》,前瞻结合2批的项目名单分析,目前中国物联网关键技术与平台创新类、集成创新与融合应用类项目主要集中在北京、浙江、广东和山东,其项目数分别为39个、24个、22个、20个。
2、企业竞争:以龙头企业间的竞争为主
《2021年中国物联网企业发展指数报告》于2021年10月29日发布,报告从动态角度评估物联网产业链各公司发展状况,围绕企业影响力、资金支持、研发技术能力、发展成效等多维度能力进行分析,剖析中国物联网企业的成就和面临的挑战,并总结中国物联网企业的发展情况及市场参与者竞争实力,试图发掘物联网行业业务实力强、成长性好以及竞争壁垒高的优秀企业群体。根据《2021年中国物联网企业发展指数报告》,2021年我国物联网最具领导力企业名单如下:
物联网行业发展前景及趋势分析
1、产业物联网占比逐渐上升
根据信通院于2020年12月发布的《2020中国物联网白皮书》,2019年中国物联网连接数中产业物联网和消费者市场各占一半,预计到2025年,物联网连接数的大部分增长来自于产业市场,产业物联网的连接数将占到总体的61%。由此来看,未来产业物联网的市场发展潜力大于消费物联网。
2、市场规模不断增大
目前,物联网在全球呈现快速发展趋势,欧、美、日、韩等国均将物联网作为重要战略新兴产业推进,但在繁荣景象背后却仍存在着众多阻碍发展的因素。其中核心标准的缺失,尤其是作为顶层设计的物联网参考架构等基础标准目前仍处于空白,基于争夺物联网产业主导权,各国对国际标准方面的竞争亦日趋白热化。
新冠疫情对于物联网行业来说犹如达摩利斯之剑,一方面疫情导致全球技术供应链出现一定的停滞期,另一方面疫情助推中国物联网的渗透。2020年无人工厂、无人配送、无人零售、远程教学、远程医疗等“无接触经济”的爆发均离不开物联网技术的支撑。综合多方面的情况分析,前瞻认为未来5年中国物联网的发展将保持高速增长,到2026年市场规模超过6万亿元。
以上数据参考前瞻产业研究院《中国物联网行业细分市场需求与投资机会分析报告》。
随着5G的商业化逐步落地,越来越多的领域加入了数字化转型之路,利用物联网技术实施智能化升级。特别是题主所列举的工业领域,就是谋求数字化转型的先锋。
特别是2020年新冠疫情爆发以来,由于供应链断裂和防疫管理不善所导致企业停工甚至是破产的例子不在少数。而对那些熬过艰难时刻的企业而言,想要在疫情常态化的背景下重塑核心竞争力,数字化转型成为了不可或缺的手段。
与传统的经营模式相比,实施数字化转型能够给企业带来巨大的价值,包括提高生产效率、减少人力成本、加速产品迭代、优化管理流程、加强制造自动化程度等等,真正起到降本增效的作用。此外,数字化程度的提高,也大大提高了企业在生产经营中各种风险的监测能力,避免造成相关损失。
当然,以上只是物联网对于某一个领域所创造的价值,同理,在面对智慧农业、智慧交通、智能家居等行业时,一样可以利用物联网技术来实现更智能和更便捷的功能,例如气候传感器和温湿度传感器可自行检测分析当前数据是否符合农作物生长需求,并联动灌溉或保温系统进行干预,确保作物最佳生长环境。(了解更多智慧人脸识别解决方案,欢迎咨询汉玛智慧)
不知道大家有没有细心发现,其实现在很多物联网的应用已经深入到我们生活各个部分。比如说共享单车,自助扫码骑行,骑完以后锁车付费走人,这个能很好地解决大家短途出行效率。还有就是应用在汽车上,专业术语叫车联网,现在很多10几万的车都具备远程监控的功能。比如说通过app远程启动车子,通过app查看车子的状态,当前在什么位置,还能根据你的行驶里程和机油寿命提醒你去保养等等。类似的例子还有很多,比如说智能家居产品,小家电产品。有些应用虽然感觉是鸡肋,这些都是他们跑马圈地的结果,先把市场占下来,再慢慢更新迭代产品。但不可否认的事,大家确实能感觉到物联网潜在的巨大价值,生怕自己错过一个亿。
从种种迹象也反映了物联网一定是个发展的趋势。总的来说,其实物联网可以和任何一个行业进行融合,让传统的产品更加智能高效。而我们汉玛智慧也在一直努力研发,争取为大家提供更多更优质的智慧解决方案,让我们的生活更加的便捷,让科技未来更指日可待!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)