蜂窝模组出货量将会激增,但市场会重新洗牌
中移物联网有限公司运营总监 龚勇
细分的场景,行业的渠道,核心的技术,才是生存的关键
中国电信广东研究院 物联网领域经理 谭华
2018年,不是寒冷,是火炉
上海移远通信技术股份有限公司 公共事务经理 孙芃卉
物联网不是一蹴而就,而是循序渐进
Semtech 市场战略总监 甘泉
2018年是资本市场的“寒冬”,却是物联网是的“初春”
厦门南鹏物联 科技 有限公司 市场总监 王铎霖
物联网需打破落地难、盈利难的质疑
日海智能市场经理 谭梦溪
2018年是物联网真正由示范到实际应用转化的起始年
北京昆仑海岸传感技术有限公司 总经理 刘伯林
先回归产品本质,其次是物联网。
深圳市汇径 科技 有限公司 总经理 孙科彧
物联网的窗口期说了这么多年,或在2019至2020年真的降临
APICloud联合创始人兼CTO 邹达
物联网不能只停留在“将来我们能为客户做什么“的概念中
北京羿娲 科技 有限公司 市场VP李博
物联网市场上拼价格抢市场并不明智
奇迹物联(北京) 科技 有限公司CEO 杨仁磊
聚焦用户与产品,就无惧外部环境
杭州中科思创射频识别技术有限公司 总经理 蔡玉锋
NB-IoT将成为万物互联的万能钥匙
芯翼信息 科技 市场总监 陈正磊
物联网连接增长依旧强势,国产芯片迎来良机
上海移芯通信 科技 有限公司 高级市场总监 杨月启
物联网并未达到预期,但不用怀疑未来的潜力
利尔达 科技 集团股份有限公司产品线经理 徐海
物联网渐行渐热,应用遍地开花
西安中星测控有限公司总经理 谷荣祥
2018年是决物联网数据传输的一年, 2019年将会是数据分析和应用的一年
上海桑锐电子 科技 股份有限公司 研发总监 张吉泰
NB-IoT量价齐飞,为物联网打开了突破口
江苏南大五维电子 科技 有限公司 总经理 潘巍松
期待5G商用,实现无人驾驶、MR影院影院等应用
深圳前海翼联 科技 有限公司 企划主管 陈奕榕
物联网平台化没有想象的市场效果,头部玩家还没出现。
深圳市飞思捷跃 科技 有限公司 CEO 杨捷
物联网应用定位精度提升需求迫切
深圳思凯微电子有限公司 总经理 张光华
AI和IoT紧密结合,是未来5年物联网的最大商机
北京博大光通物联 科技 股份有限公司 董事长 廖原
产业周期起起伏伏,做好产品才是王道
杭州数蛙 科技 有限公司 CEO 霍燕林
2018年工业互联网平台受到热捧
金蝶软件(中国)有限公司 K/3事业部总经理 张剑云
“风物长宜放眼量”,未来十年一定是物联网行业的春天。
成都精位 科技 有限公司 联合创始人&总裁 周宏亮
物联互联不仅需要技术,还需要良好的市场环境
锐骐(厦门)电子 科技 有限公司 锐骐 科技 董事长 谢洪泉
明确公司定位,聚焦产品与方案迎接新一轮洗牌
新华三技术有限公司 物联网解决方案经理 杜利征
物联行业已是“冉冉之星”,何以谈“寒冷黑夜”
上海莱璟信息技术有限公司 市场经理 何良龙
物联网企业从单一供应商向解决方案转变
苏州芒种物联 科技 有限公司 CEO 薛明刚
物联网应用在普及性和上档次两方面都将大有可为
北京优锘 科技 有限公司 VP 沈祎岗
工业物联网项目数量在逆流而上
上海美迪索科电子 科技 有限公司 VP 庄正军
物联网概念热不热,与企业不相干
北京九纯健 科技 发展有公司 副总经理 王小永
2018年是一个重新洗牌,行业优胜劣汰的一个时机
机智云创始人兼CEO 黄灼
物联网或将崛起于这个异常寒冷的冬天
七牛云边缘计算及IoT负责人 陶纯堂
5G技术的到来让万物互联时代触手可及
值得看云技术有限公司CEO 许明
物联网进入跨品牌跨品类跨协议的智能互联时代
广州云智易物联网有限公司市场总监 戴筱倩
技术发展速度远远快于物联网应用的发展
上海艾拉比智能 科技 有限公司市场副总裁 万学靖
智能家居市场正在从产品推广到用户运营的转变
富连网智能家居 科技 服务公司 生态链商务拓展总监 刘威
一站式物联网私网部署及相关应用方案将会越来越受欢迎
杭州罗万信息 科技 有限公司 常务副总裁 孙伟仁
智慧零售与工业制造业转型市场崛起迅速
深圳市宏电技术股份有限公司市场总监 张艳霞
共享单车风光不再,电动车和智能锁迎头赶上
MiraMEMS Marketing吴子健
深挖企业需求,瞄准To B领域
赫里奥(苏州) 科技 有限公司 副总经理 王剑宇
消防领域刺激了传感器的市场需求
合肥皖科智能技术有限公司 董事长 陈锦荣
新零售方案的视觉识别技术趋于成熟
安徽耐可视 科技 股份有限公司 CEO 张治国
上海艾络格电子技术有限公司董事总经理 周光兵
上海艾络格电子技术有限公司董事总经理 周光兵
物联网的发展前景很不错,具体如下:
1更安全的保护措施。在新技术出现之初,它的技术力量几乎都集中在创新上,导致监管水平低下,这就使业界的兴奋、激进和政策、监管的滞后常常形成鲜明的对比。由于物联网设备和基础设施的价格下降,企业在物联网设备上的应用也越来越普遍,这种创新和应用一旦普及,各种新技术的风险也突显出来。
2更普遍使用智能消费品设备。IoT所覆盖的行业人群广泛,从智慧交通、智能物流、医疗、农业、能源等行业应用,到私人智能家居、个人、智能汽车等应用,无论是降低成本,还是提高中国居民的生活质量,都将是中国居民生活质量的巨大提升。
从广州市白云区政府官网获悉,华为技术有限公司以 339 亿元成功竞得白云区华侨糖厂地块。据悉,华为未来或将在此处修建广州研发中心,用于智能汽车、云计算及物联网等技术领域的研发。
根据广州市白云区政府官网原文显示:“12 月 7 日,白云区华侨糖厂地块在广州公共资源交易中心成功出让,竞得人为华为技术有限公司。该地块规划为新型产业用地(M0),拟建成研发中心,总用地面积约 17894 亩,规划总建筑面积约 166 万平方米,出让金 339 亿元,地块的成功出让,为打造广州西岸,建设西部科技创新走廊按下加速键。
此前,白云区人民政府和华为技术有限公司就签署了投资框架协议,建设广州华为研发中心,就共同推动广州市智慧城市、云计算及物联网等产业发展达成全方位、深层次战略合作。这是继 2017 年白云区与华为公司合作共建“三中心一平台”后,双方再次携手达成的全方位、深层次战略合作。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
物联网,Internet of Things,简称“IoT”,即通过传感器或物理识别装置等感知技术,对物理世界进行感知,通过ICT通信传输技术将数据传输至物联网云处理平台进行计算和处理,实现人与人、人与物、物与物的链接,进而对物理世界进行管理和控制。一句话解释:互联网的升级迭代版,互联网实现人与人的链接,物联网增加人与物理世界的链接;感知物理世界的变化,并对物理世界进一步的管理和控制萌芽期:(1991年-2004年):1994年美国麻省理工学院Kevin教授提出物联网概念,1995年,比尔盖茨在《未来之路》中构想物物互联,并未引起广泛关注。1999年,麻省理工学院首先提出物联网的定义。2003年,美国《技术评论》将传感网络技术列为未来生活的十大技术之首。
初步发展期:(2005年-2008年):2005年,国际电信联盟(ITU)发布《ITU互联网报告2005:物联网》,2008年第一届国际物联网大会在瑞士苏黎世举行。
高速发展期(2009年-至今):2009年美国政府将新能源和物联网确定为美国国家战略。2009年温家宝总理在无锡视察时提出“感知中国”,无锡率先建立“感知中国”研究中心,中科院、运营商和多所大学建立物联网研究院。中国正式开始物联网行业战略部署。2010年中国政府将物联网列为关键技术,并宣布物联网是长期发展计划的一部分。2015年,欧盟成立物联网创新联盟。2016年,NB-IoT技术即将进入规模商用阶段。2018年6月,5G通信技术成熟化,第一阶段全功能标准化工作完成,进入产业全面冲刺阶段。
总结中国物联网产业发展,大致经历:
第一阶段:智能消费产品的涌现
2012-2015年期间,消费类物联网产品一夜爆发,过后却慢慢消退。包括智能灯泡、智能插座、智能水壶、智能电饭煲等等智能产品出现在市场上。大致思路是将传统硬件产品,添加上Wi-Fi、蓝牙、ZiBbee等无线技术,再结合APP进行控制。这股热潮来的快、去的也快,因为害怕的稳定性和用户体验存在问题,再加上价格比较高,对于消费者而言性价比不高,市场认可度比较低。
第二阶段:底层技术完善
第二阶段相对于上个阶段,技术有更深层次的突破。这个时候涌现了各种各样的针对物联网的技术,比如NB-IoT、LoRa等新型的传输技术、AI算法、智能语音技术等等,边缘计算、智能计算等计算存储技术走上台,传感器产品也更加的智能化,具有更多的功能。
第三阶段:行业级应用兴起
完成技术突破之后,物联网的应用逐渐从早期的消费类应用往企业级应用发展。更多的应用于城市建设、政府政务、各行各业产业当中。
物联网IoT产业架构分四层:感知层、网络层、平台层、应用层;物联网IoT产业链:端——管——边——云——用
随着云端数据处理能力开始下沉,更加贴近数据源头,使得边缘计算成为物联网产业的重要关口;将来将有75%的数据需要在网络的边缘侧分析、处理和存储。因而物联网产业链由之前的“端——管——云——用”发展为现在的“端——管——边——云——用”;
“端”:物联网终端,主要是完成数据采集以及向网络端发送的作用;包含芯片、感知技术(传感器+识别技术)、 *** 作系统;
“管”:管道层,保证通信的作用,无线连接、卫星和量子通信等方式;
“边”:边缘计算,将集中式架构分解成边缘位置的点;
“云”:云平台,主要进行数据的计算和存储;包含云计算平台和AI技术;按厂商类型分:运营商、ICT、互联网和工业制造厂商以及第三方物联网平台;按商业模式分PaaS和本地部署;按照平台功能可以划分:设备管理平台、连接管理平台、应用开发平台和业务分析平台;
“用”:物联网IoT应用层,落地到不同行业应用场景中;三大业务主线:消费性物联网、政策驱动物联网和生产性物联网;(政策驱动物联网和生产性物联网并称产业物联网)
从产业集聚发展情况来看,我国已初步形成以北京—天津、上海—无锡、深圳—广州、重庆—成都为核心的 环渤海、长三角、珠三角、中西部 地区四大物联网产业集聚区的空间布局。
其中, 环渤海地区 凭借丰富的产学研资源和总部优势,成为我国物联网产业重要的研发、设计和生产制造基地; 长三角地区 以上海、无锡双核发展为带动,整体发展比较均衡,在技术研发与产业化、应用推广方面发挥了引领示范作用; 珠三角地区 是国内物联网市场化最成熟、体系最完备的地区,目前已形成了一批自主的、竞争力强的物联网应用技术成果和信息增值服务模式,产业规模领先其他地区; 中西部地区 软件、信息服务、传感器等领域发展迅猛,成为第四大产业基地,且在自然资源和人力资源方面均存在优势,对物联网产业链底端感知层具有一定的促进作用。
产业集聚区的形成有利于产业规模效应凸显,形成产业链;有助于改善协作条件,节约生产成本;而且能更好的发挥核心城市的辐射带动作用,促进区域一体化发展。目前,四大产业集聚区相互独立、各有特色,汇聚了一批具有全国影响力的龙头企业,产业链逐渐完善,研发机构和公共服务等配套体系基本完备。工业领域物联网发展趋势分析 传统工业加速向智能化转变
所谓“物联网”(Internet of
Things,IOT),又称传感网,指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来并形成一个可以实现智能化识别和可管理的网络。
前瞻产业研究院数据显示,2016年我国物联网产业规模超过9000亿元人民币,同比增速连续多年超过20%。物联网作为通信行业新兴应用,在万物互联的大趋势下,市场规模将进一步扩大。随着行业标准完善、技术不断进步、国家政策扶持,中国的物联网产业将延续良好的发展势头,为经济持续稳定增长提供新的动力。移动互联向万物互联的扩展浪潮,将使我国创造出相比于互联网更大的市场空间和产业机遇。
物联网利用射频识别(RFID)、GPS、摄像头、传感器、传感器网络等感知、捕获、测量的技术手段,随时随地对物体进行信息采集和获取,实现智能化的决策和控制。因此,物联网在工业领域应用过程中,物联网相关技术和产品是智能工业的核心。
工业是物联网应用的重要领域。具有环境感知能力的各类终端、基于泛在技术的计算模式、移动通信等不断融入到工业生产的各个环节,可大幅提高制造效率,改善产品质量,降低产品成本和资源消耗,传统工业加速向智能化转变。
根据前瞻产业研究院发布的《物联网行业应用领域市场需求与投资预测分析报告》测算,2014年,国内物联网在工业领域需求规模为1260亿元;2016年,国内物联网在工业领域需求规模为1804亿元。2017年,国内物联网在工业领域需求规模约为2354亿元。
物联网在工业领域应用问题分析
1、IT安全问题
和前几次由新的硬设备、技术所带来的工业革命不同,工业40是由互联网所带来的第四次工业革命。也因此,有66%的受访者认为IT安全是一大挑战,当企业的IT系统连上网络,随时可能有一些未知的威胁出现在仓储管理系统、机器设备或供应链当中。
2、制造系统管理问题
工业40除了带来生产效率之外,同时也改变传统制造业的思维。当智能生产真正落实后,将会对制造管理系统带来巨大的变革,且势必变得更为复杂,包括整体的生产物流、人机协同作业等改变,也让员工培训更显重要。
3、通讯基础设施建设问题
通讯网络是实现工业40的重要关键,但是要建立一个让所有组织都能够配合的网络,必须要有一个一致的接口、通讯标准和规范。目前许多标准都还未建立,例如工业通讯、工程、IT安全、数字化工厂、设备整合等都还未被纳入整体参考架构中。
物联网在工业领域应用前景及发展趋势预测
近年来,我国政府通过工业化与信息化融合战略正在大力推进物联网技术向传统行业中的深度渗透。工信部于2013年9月发布的《工业化与信息化深度融合专项行动计划(2013-2018年)》中重点提出的互联网与工业融合创新试点工作已经进入了全面实施阶段。
以物联网融合创新为特征的新型网络化智能生产方式正塑造未来制造业的核心竞争力,推动形成新的产业组织方式、新的企业与用户关系、新的服务模式和新业态,推动汽车、飞机、工程装备、家电等传统工业领域向网络化、智能化、柔性化、服务化转型,孕育和推动全球新产业革命的发展。
美国制造业巨头通用电气公司充分利用物联网技术,已推出了二十余种工业互联网/物联网应用产品,涵盖了石油天然气平台监测管理、铁路机车效率分析、提升风电机组电力输出、电力公司配电系统优化、医疗云影像等各个领域。AT&T基于GE的软件平台Predix开发M2M解决方案,越来越多的工业机器将通过M2M连接到网络。
例如:物联网应用在智能工厂,具有相当广泛的应用前景,经济效益和社会效益明显。导入物联网的智能工厂,至少可以实现以下五个功能,即:电子工单、生产过程透明化、生产过程可控化、产能精确统计、车间电子看板。通过这五大功能,不但可实现制造过程信息的视觉化,对于生产管理和决策也会产生许多作用。根据物联网在智能工业的产值贡献比例来看,2023年国内物联网在工业需求规模在7821亿元左右。有机会,但是建议不要做泛和大,从垂直领域出发比较好,为啥这样说呢?原因如下。
1、各大运营商、互联网公司、设备制造商等等企业都在做综合性的平台。
国内有阿里、华为、三大运营商、百度、腾讯、小米、海尔、京东、中电科等。
国外有亚马逊、IBM、SAP、
谷歌、GE、西门子、博世等。
通过以上名单可以发现,这些公司的特点。
这说明物联网是未来的发展方向,是值得花钱而且花大钱去布局的事。
2、做综合性的物联网平台,要求的资金、资源和技术要求会很高。因为是综合性平台,那么你得搞清楚各行各业的所使用物联网平台的诉求,行业标准等等,不然你的用户群体就会很窄。
3、面对的竞争对手的实力都不可小觑,你要考虑的是现阶段进入这个领域做平台在技术上能否与以上那些公司一较高下呢?你想投入多少时间和精力去做平台呢?人家都可是布局好几年了,踩了很多坑积累了很多经验,且现在平台已具有一定规模,形成了一定的行业壁垒,特别是华为,据我所知,国内运营商的平台都离不开华为的支持。
物联网平台的玩家之多,让人惊叹啊,那么咱们还有没有机会呢?答案是肯定的,有!但我的建议走垂直领域。
物联网的领域很广泛,所以专业的物联网平台未来会有很多,而这种综合性的物联网平台经过几年的厮杀后,最终也就剩下几家巨头。何谓垂直领域的物联网平台呢?
最基本的就是行业垂直,比如工业、农业、教育、医疗、安防、建筑、家居、交通运输等领域。
以上玩家也有做垂直领域的,比如ABB/西门子/GE/普奥云/博世等,他们专注工业领域,爱立信、诺基亚专注通信领域,而互联网巨头则是走综合性的较多,因为他们有一定客户基础、服务器资源和用户群体,可以面对企业和开发者提供平台服务,海尔/小米等企业就是在智能家居领域发力的。
不出意外,安防领域的海康、大华都在对自己的领域来架设相应的物联网平台。
从专业的角度来看物联网平台类型有功能呢?
物联网平台有五种类型
1网络连接,网络连接平台以物联网系统的网络组件为中心。它们为用户提供保持设备在线所必需的软件、连接硬件和数据指导。它们的网络通常依赖现有的运营商服务和WI-FI,并以一种便于物联网设置的方式配置网络连接。
有机会的,物联网的网少不了平台,没有平台就没有物联网。平台提供基于数据的存储、管理等。数据挖掘、数据分析等都基于云平台来计算。
物联网平台从另一个角度来看,是数据的“聚合”平台,通过大数据分析,给决策提供状态、趋势和决策等。
随着5G时代的到来,“边缘计算”一词越来越多的出现在大众视野。今天我们就来讲讲Arex算力资源平台如何利用“边缘计算”制霸未来物联网20。
什么是边缘计算?
首先我们介绍一下什么是边缘计算:边缘计算是分布式计算技术的一种,分布式系统的崛起催生边缘计算平台和新的网络构架分布式AI会在最后一英里网络中增加更多的计算、智能和处理/存储能力,将引发移动端硬件和算力变革。
在这种配置中,人工智能引擎将依赖于大量物联网传感器和执行器,收集和处理大量的 *** 作现场数据。海量数据将为“本地化”的边缘计算AI引擎提供燃料,这些引擎将运行本地进程并在现场做出决策。
因此网络需要另一种水平的实时边缘计算、数据收集和存储,将推动人工智能处理到网络边缘。这将完成云边缘智能和网络化计算机的循环, 并通过基于区块链的智能合约来完成数据授权和业务运转。
物联网中边缘计算与区块链的结合是大势所趋,会将当前的传统物联网完全颠覆掉。
为什么这么说呢?
传统物联网将被淘汰
伴随着近年来通用计算机设备的飞速发展,各类自动化的智能设备开始进入人们视野,背后是廉价传感器和控制设备的爆炸性增长。传统物联网系统基于服务器/客户端的中心化架构。即所有物联设备都通过云实现验证、连接和智能控制。
中心化的物联网架构存在三个问题。
一是云计算成本,例如在家庭应用场景下,两台家电相距不到一米,也需要通过云端进行沟通。数据汇总到单一的控制中心,企业所销售的物联设备越多,其中心云计算服务支出的成本会越大。由于终端物联设备竞争愈加激烈,利润走低,中心计算成本矛盾会越来越突出。
其次,中心化的数据收集和服务方式,无法从根本上向用户保证数据会合法使用。用户的数据保护完全依靠企业单方面的承诺,难以进行有效的监管。
第三,中心化物联生态系统中,一个设备被攻陷,所有的设备会受到影响。例如《麻省理工 科技 评论》2017年所指出的僵尸物联网,可以通过感染并控制摄像头、监视器等物联设备,造成大规模网络瘫痪。
区块链技术重塑物联网
区块链技术可以利用区块链独特的不可篡改的分布式账本记录特性,构建底层通讯节点、建立链上算力生态、依托分布式存储用于计算服务等区块链技术的综合应用,将全球闲置算力整合起来,通过构建“边缘算力”模式为有需求的用户提供d性可扩容的算力交易、算力租赁等服务。为用户打造一个开放、公平、透明和低门槛的去中心化算力资源共享平台,同时结合丰富的行业经验为全球客户提供更优质的服务。
简单来说就是Arex算力资源平台利用分布式计算模式将全球的闲置算力进行整合,从而构建出高数量级的“边缘算力”,并以此为算力源对需要的应用场景进行高能输出。
边缘算力的应用场景到底有多广阔?
边缘计算将数据处理从云中心转移到网络边缘,计算和数据存储可以分散到互联网靠近物联终端、传感器和用户的边缘,不仅可以缓解云带宽压力,还可以优化面向感知驱动的网络服务架构。(例如家里的空调、热水器与冰箱、安防摄像头等可以通过边缘计算进行协调运行,即使是在连接不上云服务器的情况下,也能确保最佳的节能和服务状态。)
第三方数据分析机构IDC预测,在2020年全球将有约500亿的智能设备接入互联网,除了目前大火的5G通信外,包括大数据人工智能穿戴产品、无人驾驶技术、智慧城市服务等,其中40%的数据需要边缘计算服务。由此可见边缘计算有着强大市场潜力,也是当前各服务商争夺的热点。
无人驾驶技术:
无人驾驶
智能穿戴设备:
智慧城市:
要回答物联网云平台是不是还有机会的问题,首先要搞清楚几方面的状况:
一是定位。从技术角度来说,你是做物联网云平台的那一层,IaaS、PaaS、SaaS,单做某层或是混合?而技术的定位取决于:(1)你觉得那一块是你发掘出的空白或者你觉得有前景?(2)为你的客户提供什么样的价值(3)你想做什么样的商业模式。这三个问题依次定推,最后才决定了你了的技术定位和技术架构。找准定位,这是你开始一切的起点。
二是资源。这个我就不多说了,包括资金、技术、人脉、产业链合作,这是你保障自己可以开始有效行动的基础。
三是团队。团队是真正去实施理想的载体,可以是几个人的创业“作坊”,也可以是有一定规模的公司,也可以是松散的联盟组织。
其实,物联网的市场何其大,需要的云服务何其多,宏观市场和细分市场规模都足够你有所作为。做不做,做不做得好在于自己。至于,做不做设备终端,就看你是怎么玩了。
机会很大
物联网平台承上启下,是物联网产业链枢纽。按照逻辑关系和功能物联网平台从下到上提供终端管理、连接管理、应用支持、业务分析等主要功能。
通信技术发展促进连接数迅速猛增,物联网迎来告诉发展引爆点
连接数告诉增长是物联网行业发展基础
物联网发展路径为连接--感知--智能,目前处于物联网发展第一阶段即物联网连接数快速增长阶段。到2018年,全球物联网连接数将超过手机连接数。
物联网发展第一阶段:物联网连接大规模建立阶段,越来越多的设备在放入通信模块后通过移动网络(LPWA\GSM\3G\LTE\5G等)、WiFi、蓝牙、RFID、ZigBee等连接技术连接入网,在这一阶段网络基础设施建设、连接建设及管理、终端智能化是核心。爱立信预测到2021年,全球的移动连接数将达到275亿,其中物联网连接数将达到157亿、手机连接数为86亿。智能制造、智能物流、智能安防、智能电力、智能交通、车联网、智能家居、可穿戴设备、智慧医疗等领域连接数将呈指数级增长。该阶段中最大投资机会主要在于网络基础设施建设、通讯芯片和模组、各类传感器、连接管理平台、测量表具等。
物联网发展第二阶段:大量连接入网的设备状态被感知,产生海量数据,形成了物联网大数据。这一阶段传感器、计量器等器件进一步智能化,多样化的数据被感知和采集,汇集到云平台进行存储、分类处理和分析,此时物联网也成为云计算平台规模最大的业务之一。根据IDC的预测, 2020年全球数据总量将超过40ZB(相当于4万亿GB),这一数据量将是2012年的22倍,年复合增长率48%。这一阶段,云计算将伴随物联网快速发展。该阶段主要投资机会在AEP平台、云存储、云计算、数据分析等。
物联网发展第三阶段:初始人工智能已经实现,对物联网产生数据的智能分析和物联网行业应用及服务将体现出核心价值。Gartner 预测2020 年物联网应用与服务产值将达到2620 亿美元,市场规模超过物联网基础设施领域的4 倍。该阶段物联网数据发挥出最大价值,企业对传感数据进行分析并利用分析结果构建解决方案实现商业变现,同时运营商坐拥大量用户数据信息,通过数据的变现将大幅改善运营商的收入。该阶段投资者机会主要在于物联网综合解决方案提供商、人工智能、机器学习厂商等
物联网云平台是一个专门为物联网定制的云平台,物联网与普通的互联网是不同的:物联网终端设备比普通互联网手机端,电脑端多出几个数量级;普通互联网对>
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)