所以物联网的体系结构可分为:
感知层、网络层和应用层三大层次。
1、感知层:
感知层是物联网的底层,但它是实现物联网全面感知的核心能力,主要解决生物世界和物理世界的数据获取和连接问题。
2、网络层:
广泛覆盖的移动通信网络是实现物联网的基础设施,网络层主要解决感知层所获得的长距离传输数据的问题。
它是物联网的中间层,是物联网三大层次中标准化程度最高、产业化能力最强、最成熟的部分。
3、应用层:
物联网应用层是提供丰富的基于物联网的应用,是物联网和用户(包括人、组织和其他系统)的接口。它与行业需求结合,实现物联网的智能应用,也是物联网发展的根本目标。
扩展资料:
感知层:
物联网是各种感知技术的广泛应用。物联网上有大量的多种类型传感器,不同类别的传感器所捕获的信息内容和信息格式不同,所以每个传感器都是唯一的一个信息源。
传感器获得的数据具有实时性,按一定的频率周期性地采集环境信息,不断更新数据。
物联网运用的射频识别器、全球定位系统、红外感应器等这些传感设备,它们的作用就像是人的五官,可以识别和获取各类事物的数据信息。
通过这些传感设备,能让任何没有生命的物体都拟入化,让物体也可以有“感受和知觉”,从而实现对物体的智能化控制。
通常,物联网的感知层包括二氧化碳浓度传感器、温湿度传感器、二维码标签、电子标签、条形码和读写器、摄像头等感知终端。
感知层采集信息的来源,它的主要功能是识别物体、采集信息,其作用相当于人的五个功能器官。
网络层:
它由各种私有网络、互联网、有线通信网、无线通信网、网络管理系统和云计算平台等组成,相当于人的神经中枢和大脑,负责传递和处理感知层获取的信息。
网络层的传递,主要通过因特网和各种网络的结合,对接收到的各种感知信息进行传送,并实现信息的交互共享和有效处理,关键在于为物联网应用特征进行优化和改进,形成协同感知的网络。
网络层的目的是实现两个端系统之间的数据透明传送。其具体功能包括寻址、路由选择,以及连接的建立、保持和终止等。它提供的服务使运输层不需要了解网络中的数据传输和交换技术。
网络层的产生是物联网发展的结果。在联机系统和线路交换的环境中,通信技术实实在在地改变着人们的生活和工作方式。
传感器是物联网的“感觉器官”,通信技术则是物联网传输信息的“神经”,实现信息的可靠传送。
通信技术,特别是无线通信技术的发展,为物联网感知层所产生的数据提供了可靠的传输通道。因此,以太网、移动网、无线网等各种相关通信技术的发展,为物联网数据的信息传输提供了可靠的传送保证。
物联网网络层是三大层次结构中的第二次,物联网要求网络层把感知层接收到的信息高效、安全地进行传送。
应用层:
物联网的行业特性主要体现在其应用领域内。目前绿色农业、工业监控、公共安全、城市管理、远程医疗、智能家居、智能交通和环境监测等各个行业均有物联网应用的尝试,某些行业已经积累了一些成功的案例。
将物联网开发技术与行业信息化需求相结合,实现广泛智能化应用的解决方案,关键在于行业融合、信息资源的开发利用、低成本高质量的解决方案、信息安全的保障以及有效的商业模式的开发。
感知层收集到大量的、多样化的数据,需要进行相应的处理才能作出智能的决策。海量的数据存储与处理,需要更加先进的计算机技术。近些年,随着不同计算技术的发展与融合所形成的云计算技术,被认为是物联网发展最强大的技术支持。
云计算技术为物联网海量数据的存储提供了平台,其中的数据挖掘技术、数据库技术的发展为海量数据的处理分析提供了可能。
物联网应用层的标准体系主要包括应用层架构标准、软件和算法标准、云计算技术标准、行业或公众应用类标准以及相关安全体系标准。
应用层架构是面向对象的服务架构,包括SOA体系架构、业务流程之间的通信协议、面向上层业务应用的流程管理、元数据标准以及SOA安全架构标准。
云计算技术标准重点包括开放云计算接口、云计算互 *** 作、云计算开放式虚拟化架构(资源管理与控制)、云计算安全架构等。
软件和算法技术标准包括数据存储、数据挖掘、海量智能信息处理和呈现等。安全标准重点有安全体系架构、安全协议、用户和应用隐私保护、虚拟化和匿名化、面向服务的自适应安全技术标准等。
物联网是新型信息系统的代名词,它是三方面的组合:
一是“物”,即由传感器、射频识别器以及各种执行机构实现的数字信息空间与实际事物关联;
二是“网”,即利用互联网将这些物和整个数字信息空间进行互联,以方便广泛的应用;
三是应用,即以采集和互联作为基础,深入、广泛、自动化地采集大量信息,以实现更高智慧的应用和服务。
参考资料来源:百度百科-物联网
物理层:以太网 · 调制解调器 · 电力线通信(PLC) · SONET/SDH · G709 · 光导纤维 · 同轴电缆 · 双绞线等
物理层(或称物理层,Physical Layer)是计算机网络OSI模型中最低的一层。物理层规定:为传输数据所需要的物理链路创建、维持、拆除,而提供具有机械的,电子的,功能的和规范的特性。简单的说,物理层确保原始的数据可在各种物理媒体上传输。局域网与广域网皆属第1、2层。
物理层是OSI的第一层,它虽然处于最底层,却是整个开放系统的基础。物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。如果您想要用尽量少的词来记住这个第一层,那就是“信号和介质”。
OSI采纳了各种现成的协议,其中有RS-232、RS-449、X21、V35、ISDN、以及FDDI、IEEE8023、IEEE8024、和IEEE8025的物理层协议。
数据链路层:Wi-Fi(IEEE 80211) · WiMAX(IEEE 80216) ·ATM · DTM · 令牌环 · 以太网 ·FDDI · 帧中继 · GPRS · EVDO ·HSPA · HDLC · PPP · L2TP ·PPTP · ISDN·STP 等
数据链路层是OSI参考模型中的第二层,介乎于物理层和网络层之间。数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。为达到这一目的,数据链路必须具备一系列相应的功能,主要有:如何将数据组合成数据块,在数据链路层中称这种数据块为帧(frame),帧是数据链路层的传送单位;如何控制帧在物理信道上的传输,包括如何处理传输差错,如何调节发送速率以使与接收方相匹配;以及在两个网络实体之间提供数据链路通路的建立、维持和释放的管理。
移动通信系统中Uu口协议的第二层,也叫层二或L2。
网络层协议:IP (IPv4 · IPv6) · ICMP· ICMPv6·IGMP ·IS-IS · IPsec · ARP · RARP等
网络层是OSI参考模型中的第三层,介于传输层和数据链路层之间,它在数据链路层提供的两个相邻端点之间的数据帧的传送功能上,进一步管理网络中的数据通信,将数据设法从源端经过若干个中间节点传送到目的端,从而向运输层提供最基本的端到端的数据传送服务。主要内容有:虚电路分组交换和数据报分组交换、路由选择算法、阻塞控制方法、X25协议、综合业务数据网(ISDN)、异步传输模式(ATM)及网际互连原理与实现。
传输层协议:TCP · UDP · TLS · DCCP · SCTP · RSVP · OSPF 等
传输层(Transport Layer)是ISO OSI协议的第四层协议,实现端到端的数据传输。该层是两台计算机经过网络进行数据通信时,第一个端到端的层次,具有缓冲作用。当网络层服务质量不能满足要求时,它将服务加以提高,以满足高层的要求;当网络层服务质量较好时,它只用很少的工作。传输层还可进行复用,即在一个网络连接上创建多个逻辑连接。
传输层在终端用户之间提供透明的数据传输,向上层提供可靠的数据传输服务。传输层在给定的链路上通过流量控、分段/重组和差错控制。一些协议是面向链接的。这就意味着传输层能保持对分段的跟踪,并且重传那些失败的分段。
应用层协议:DHCP ·DNS · FTP · Gopher · >
应用层位于物联网三层结构中的最顶层,其功能为“处理”,即通过云计算平台进行信息处理。应用层与最低端的感知层一起,是物联网的显著特征和核心所在,应用层可以对感知层采集数据进行计算、处理和知识挖掘,从而实现对物理世界的实时控制、精确管理和科学决策。
物联网应用层的核心功能围绕两个方面:
一是“数据”,应用层需要完成数据的管理和数据的处理;
二是“应用”,仅仅管理和处理数据还远远不够,必须将这些数据与各行业应用相结合。例如在智能电网中的远程电力抄表应用:安置于用户家中的读表器就是感知层中的传感器,这些传感器在收集到用户用电的信息后,通过网络发送并汇总到发电厂的处理器上。该处理器及其对应工作就属于应用层,它将完成对用户用电信息的分析,并自动采取相关措施。
扩展资料
TCP/IP协议毫无疑问是这三大协议中最重要的一个,作为互联网的基础协议,没有它就根本不可能上网,任何和互联网有关的 *** 作都离不开TCP/IP协议。不过TCP/IP协议也是这三大协议中配置起来最麻烦的一个,单机上网还好,而通过局域网访问互联网的话,就要详细设置IP地址,网关,子网掩码,DNS服务器等参数。
TCP/IP尽管是目前最流行的网络协议,但TCP/IP协议在局域网中的通信效率并不高,使用它在浏览“网上邻居”中的计算机时,经常会出现不能正常浏览的现象。此时安装NetBEUI协议就会解决这个问题。
NetBEUI即NetBios Enhanced User Interface ,或NetBios增强用户接口。它是NetBIOS协议的增强版本,曾被许多 *** 作系统采用,例如Windows for Workgroup、Win 9x系列、Windows NT等。NETBEUI协议在许多情形下很有用,是WINDOWS98之前的 *** 作系统的缺省协议。NetBEUI协议是一种短小精悍、通信效率高的广播型协议,安装后不需要进行设置,特别适合于在“网络邻居”传送数据。所以建议除了TCP/IP协议之外,小型局域网的计算机也可以安上NetBEUI协议。另外还有一点要注意,如果一台只装了TCP/IP协议的WINDOWS98机器要想加入到WINNT域,也必须安装NetBEUI协议。
IPX/SPX协议本来就是Novell开发的专用于NetWare网络中的协议,但是也非常常用--大部分可以联机的游戏都支持IPX/SPX协议,比如星际争霸,反恐精英等等。虽然这些游戏通过TCP/IP协议也能联机,但显然还是通过IPX/SPX协议更省事,因为根本不需要任何设置。除此之外,IPX/SPX协议在非局域网络中的用途似乎并不是很大如果确定不在局域网中联机玩游戏,那么这个协议可有可无。
参考资料:
物联网可分为三层:网络层、应用层、感知层。
网络层由各种私有网络、互联网、有线和无线通信网、网络管理系统和云计算平台等组成,相当于人的神经中枢和大脑,负责传递和处理感知层获取的信息。
应用层是物联网和用户(包括人、组织和其他系统)的接口,它与行业需求结合,实现物联网的智能应用。
感知层由各种传感器以及传感器网关构成,包括二氧化碳浓度传感器、温度传感器、湿度传感器、二维码标签、RFID标签和读写器、摄像头、GPS等感知终端。
感知层的作用相当于人的眼耳鼻喉和皮肤等神经末梢,它是物联网识别物体、采集信息的来源,其主要功能是识别物体,采集信息。
扩展资料:
相关技术
1、地址资源
物联网的实现需要给每个物体分配唯一的标识或地址。最早的可定址性想法是基于RFID标签和电子产品唯一编码来实现的。
另一个来自语义网的想法是,用现有的命名协议,如统一资源标志符来访问所有物品(不仅限于电子产品,智能设备和带有RFID标签的物品)。这些物品本身不能交谈,但通过这种方式它们可以被其他节点访问,例如一个强大的中央服务器。
2、人工智能
自主控制也并不依赖于网络架构。但目前的研究趋势是将自主控制和物联网结合在一起在未来物联网可能是一个非决定性的、开放的网络,其中自组织的或智能的实体和虚拟物品能够和环境交互并基于它们各自的目的自主运行。
3、架构
在物联网中,一个事件信息很可能不是一个预先被决定的,有确定句法结构的消息,而是一种能够自我表达的内容,例如语义网。
相应地,信息也不必要有着确定的协议来规范所有可能的内容,因为不可能存在一个“终极的规范”能够预测所有的信息内容。
那种自上而下进行的标准化是静态的,无法适应网络动态的演化,因而也是不切实际的。在物联网上的信息应该是能够自我解释的,顺应一些标准,同时也能够演化的。
4、系统
物联网中并不是所有节点都必须运行在全球层面上,比如TCP/IP层。举例来讲,很多末端传感器和执行器没有运行TCP/IP协议栈的能力,取而代之的是它们通过ZigBee、现场总线等方式接入。
这些设备通常也只有有限的地址翻译能力和信息解析能力,为了将这些设备接入物联网,需要某种代理设备和程序实现以下功能:在子网中用“当地语言”与设备通信。
将“当地语言”和上层网络语言互译;补足设备欠缺的接入能力。因此该类代理设备也是物联网硬件的重要组成之一。
参考资料来源:百度百科--物联网
计算机网络中应用层、传输层和网络层涉及到的一些协议如下:
应用层协议:应用层协议是计算机网络中最高层的协议,用于处理应用程序之间的数据交换。常用的应用层协议包括>
传输层协议:传输层协议主要负责实现数据在网络中的可靠传输,通常包括TCP和UDP两种协议。其中,TCP协议提供面向连接、可靠的数据传输,而UDP协议则提供无连接、不可靠的数据传输。
网络层协议:网络层协议主要负责实现数据在网络中的路由和转发,以及网络地址的管理。常用的网络层协议包括IP、ICMP、ARP、RARP、OSPF等。其中,IP协议是互联网中最重要的协议之一,负责实现数据包在网络中的传输和路由选择。
这些协议在计算机网络中各自扮演不同的角色,共同组成了网络通信的基础框架。应用层协议直接面向用户应用程序,为其提供数据传输和交互的功能;传输层协议则通过TCP或UDP协议保证数据的可靠传输;网络层协议则实现数据在网络中的路由和转发,保证数据能够从源节点到目标节点的可靠传输。
-------FunNet超有趣学网络
物联网感知环节的异构特性决定了它的开放、分层和可扩展的网络体系结构。
研究人员在描述物联网的体系框架时,多采用国际电信联盟ITU-T的泛在感应器网络体系结构作为基础。该体系结构自下而上分为5个层次,分别为传感器网络层、泛在传感器网络接入层、骨干网络层、网络中间件层和USN网络应用层。
在谈到具体的物联网应用时,一般传感器网络层和泛在传感器网络接入层合并成为物联网的感知层,主要负责采集现实环境中的信息数据。
骨干网络层在物联网的应用当中是互联网,那么将被下一代网络NGN所取代。而物联网的应用层则包含了泛在传感器网络中间件层和应用层,主要实现物联网的智能计算和管理。 欧洲电信标准化协会M2M技术委员会给出的简单M2M架构,是USN的一个简化版本。在这个架构当中,从左至右网络就分为了应用层、网络层和感知层三层体系结构,与物联网结构相对应。
在每一层当中,都有不同的技术标准来定义物联网应用。比如在感知层,它就包括了IEEE的Zigbee标准802154,CeneLec的智能仪表标准。在网络层,有ETSI的M2M通信标准,Cen的智能仪表网络层标准协议。应用层有Zigbee联盟协议,W3C标准协议等等。 国际电信联盟第13研究组会议正式审议通过了“物联网概述”(YIoT-overview)标准草案,标准编号为Y2060。该标准是全球第一个物联网总体性标准。
Y2060是由我国工信部电信研究院牵头立项,多家国内外高校、科研机构、企业和标准组织共同协商制定完成的第一份物联网总体性标准草案。
该概述标准涵盖了物联网的概念、术语、技术视图、特征、需求、参考模型、商业模式等基本内容。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)