人工智能与物联网的区别到底是什么?

人工智能与物联网的区别到底是什么?,第1张

区别
一、什么是物联网
1,物联网在之前被定义为通过射频识别(RFID)、红外线感应器、全球定位系统、激光扫描器、气体感应器等信息传感设备按约定的协议把任何物品与互联网连接起来进行信息交换,以实现智能化识别、定位、跟踪、监控和管理的一种网络,简言之物联网就是“物物相连的互联网”。
后来被重新定义为当下几乎所有技术与计算机、互联网技术的结合,实现物体与物体之间:环境以及状态信息实时的实时共享以及智能化的收集、传递、处理、执行。
广义上说,当下涉及的信息技术的应用,都可以纳入物联网的范畴。
二、什么是人工智能
人工智能英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分枝,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
它是对人的意识、思维的信息过程的模拟,人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

人工智能促进了计算机工业网络的发展,同时也带来了劳动就业问题。由于人工智能能够代替人类进行各种技术工作和脑力劳动,将会使一部分人不得不改变工种,甚至造成失业。人类一方面希望人工智能能够代替人类从事各种劳动,另一方面又担心人工智能的发展会引起新的社会问题。近10多年来,社会结构正在发生一种变化,即人与机器的社会结构将会被人与机器人的社会结构所取代,很多本来是由人承担的工作将由机器人来担任。
物联网是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。
区块链的五个基本特征是什么?区块链是分布式数据存储,点对点传输,共识机制,加密算法等计算机技术在互联网时代的创新应用模式。虽然不同报告中对区块链的介绍措辞不尽相同,但“去中心化、开放性、自治性、信息不可篡改和匿名性”这五个基本特征得到了共识性。

物联网这一概念其实在很早之前就被提出,其以互联网为核心和基础,并延伸和扩展到了各式各样的终端之上,简单来说就是实物联入网络,最终实现物与物之间、人与物之间的信息交互。而随着现在互联网应用的拓展和延伸,特别是在以 5G 为代表的新一代信息技术的加持下,越来愈多的新模式、新业务不断涌现,也让人们生活、办公、出行的方式也迎来了变化。


来源于网络


5G+AI+大数据实现更智慧的万物互联


说到现在的互联网,5G绝对是绕不开的一个话题,相较于其它蜂窝技术,5G 在物联网连接上有着得天独厚的优势。除了大家比较熟悉的更快速的传输速度,还提供了支持海量连接的高带宽,相比4G,5G 连接密度提高了近十倍,能效密度提升近百倍。这也意味着在人口密度大、智能设备数量庞杂的城市街道、大型场馆和商场,5G的超大吞吐量能够完全胜任这些场景中大量设备的接入使用需求。


正因为5G的到来,为实现真正意义上的万物互联提供了基础。同时在更多设备接入网络之后,为了让设备之间的互联更加智能,大数据和 AI 技术也起到了重要的推动作用。当数以亿计的终端设备连接到网络时,就会累积大量数据,大数据技术可用来整理这些数据,配合AI模型进行数据分析,结合算法实现不断优化,以提升整个系统的智能化程度。


物联设备在 5G、大数据和AI的支持下,从以人为主导的互联,逐渐变成了设备自我智能调节,看似都实现了互联的结果,但对于我们这些实际使用的用户来讲,设备之间能够更智能更简单的了解彼此,减少人为控制,体验也发生了实质性的变化。


在不断推动万物智能互联发展的过程中,一大批先行者企业可以说扮演了十分重要的角色,其中包括通信领域的高通公司。高通的物联网解决方案,为全球不同国家、不同行业提供的创新产品与解决方案。近年来随着5G的普及,高通更是携手合作伙伴,通过汇聚覆盖10大行业的多款产品应用和案例故事,展现了物联网生态系统的各种创新,在5G+AI+大数据等技术的共同支持下,今天的物联网不再只局限于"万物互联",而是向着"万物智联"迈进。


物联网创新推动生活场景数字化变革


近年来,得益于数字经济政策环境和创新应用落地土壤,以5G、物联网等为代表的数字技术为国内企业创造了增长空间,更多的实际用例将我们平时接触的购物、医疗等领域全部覆盖。更加智能化的互联也让物联网技术在全球范围的应用场景和深度超乎想象。


东集小码哥(来源于网络)


以医疗行业为例,企业可以利用高通全球化解决方案,将创新产品与医疗场景相融合。其中东集推出的高标准的智慧医疗手持终端,为海内外医疗服务机构提供了数据采集终端。通过高通骁龙5G移动平台的加持,东集的手持终端支持丰富的全球5G频段,并且同时支持Wi-Fi6 Ready通信技术,即便是在医院路由器高密度连接情况下,仍可保证畅快互联且支持WPA3加密技术,保证病患信息安全传输。加上高通Al引擎,可以让整个终端的算力加倍,承载更多高性能应用的高效运行,无论是输液、查房等临床场景,药房管理等内勤场景,还是检测标本、体检报告配送等外包服务场景都能够支持涵盖,并精确进行分类 *** 作,便携和高效性让医护人员的工作效率提升不少,也让患者的就医体验变得更为简洁。


超嗨科技购物车(来源于网络)


在以往传统的购物过程中,选购商品、排队结账是必不可少的环节,尤其在大型商超收银台前,消费者对数米长的结账队伍早已司空见惯,这种形式不仅浪费消费者的购物时间,也影响商超整体的经营效率。


针对于此,超嗨科技通过采用高通的解决方案,在普通智能购物车的基础上,接入新零售领域的AI技术和通信技术,研发出全新智能购物车,搭载骁龙移动平台的购物车,支持Wi-Fi和无线网络、还提供了不错的图形识别性能。在AI算力支持下,消费者进入商场购物时,可以通过智能购物车直接自助扫描商品进行购物。通过网络内置传感器可以进行数据交互,在购物前支持账号注册/会员登录,购物中支持购物防损、生鲜称重、购物定位与导航等功能,购物后还能实现自助结算,解决了以往线下购物的诸多痛点问题,让用户拥有了全新的线下购物体验。


物联网引领全新工作方式


近年来疫情持续影响着我们的工作生活,不少人的工作方式也因此产生了很大的改变,尤其是线上办公的形式让不少企业在特殊时期也依能够正常运作。而随着这种形式的推广,也诞生出了不少新兴技术和业务模式。通过线上公办模式的持续创新,催生了更高效、低成本和更协同的智能工作方式。


钉钉会议一体机F2(来源于钉钉)


其中钉钉基于高通高性能物联网解决方案还推出了视频会议一体机F2,高通领先的视频技术让F2在10米距离内能实现全高清画面覆盖,高性能AI的加入让会议一体机拥有了自动取景、发言人跟踪、多画面自动导播等功能,为企业用户提供了远程音视频沟通、协同能力,更智能高效的会议形式也帮助企业节约差旅成本,提升工作效率,为企业远程高效办公带来不小增益。


加速城市管理和交通系统智能化


过去的十年里,传统意义上的车联网在发展,也努力开放,但不同的厂商、不同的企业都各成一套系统,这让车联网更多止步于“联网的汽车”,而并非一个真正的移动互联时代的产品。而随着现在更多规范和开放接口的出现,成功打破了各厂商之间的壁垒,让城市交通建设朝着更智慧、创新的方向发展。


在汽车领域,高通布局了车载信息处理和C-V2X、数字座舱、云侧终端管理、先进驾驶辅助系统(ADAS)和自动驾驶(AD)。通过配合国内的主机厂商和配件厂商,持续利用其移动通信、计算方面的能力,合作推动车联网技术的发展,并利用5G技术致力改善人们的交通出行,使未来的出行交通更加安全、可靠。


九号共享滑板车S90L(来源于网络)


除了智慧出行之外,共享出行作为智慧城市的关键出行模式,在提升出行效率、合理分配社会资源、促进智慧城市建设等方面发挥着不可或缺的作用。其中九号公司推出了智能共享滑板车S90L,同样也是利用高通平台提供的AI算力,滑板车可自主感知道路信息并检测停车环境,对提升用户骑行安全、规范骑行习惯提供了很大价值;同时该平台支持全球广泛频段,为滑板车在不同国家运营提供稳定、便捷的连接。


总结


今天,物联网技术在全球范围的应用场景和深度已经超出了我们的想象。不仅仅是上面的一些用例,我们还能看到使用物联网监测系统实时采集土壤和温湿度等环境数据;妈妈通过智能婴儿监护机的镜头看护自己熟睡中的宝宝;物流企业的工作人员利用手持设备高效管理仓库中的所有快递等等使用场景。


也正是通过这些成熟的物联网解决方案,我们已经能够享受到智能家居带来的舒适,智能办公带来的企业变革以及共享出行带来的出行便捷,在数字化转型的大趋势推动下,物联网行业还将持续挖掘用户的需求,通过与 5G、人工智能、大数据、云计算等新技术的不断融合,相信今后还会有更多应用场景的落地,让设备之间的智慧互联惠及更多用户。


来源于高通


面对这些机遇挑战,其实更需要高通这样的企业来扮演开拓者这一角色,凭借在物联网领域深厚积累和深远布局,各行各业也都愿意与高通合作,通过其解决方案助力行业加速以及更多满足用户使用需要的产品面试,不仅推动了物联网终端普及,也进一步赋能下一代物联网生态系统创新。总之,相信在各类企业和高通的共同合作努力之下,物联网还将在众多领域创造出更大价值。

1感应层将物品联入互联网的目的之一是信息共享,信息加工,实时控制,但是现在很多传感器的功能都还处于初级阶段。例如家用电器的开关情况,或者热水器的温度情况等。在我看来这些样的信息若要产生比较理想的效用,那得有一个前提,就是收集的数据量巨大。而在感应层如果用上人工智能的技术,就可以将传感器的功能增强,从而从数据的来源上提高了数据的可用性。举个简单的例子:如果在每个红绿灯路口加装监控系统,在没有用到人工智能的技术的情况下,也许能够统计到经过车辆的数量这样的信息。但是一旦用上人工智能技术中的图像识别技术,就不仅能知道这个路口的车辆经过数量,还可以识别出经过车辆的车牌号,车辆类型等信息。这样就可以在感应层采集到更多的有用信息用于进一步的分析处理。2分析层将大量的信息搜集到之后,就可以在一个统一的计算机中心对这些数据进行人工智能的另一种应用,数据挖掘。例如刚才那个路口监控系统的例子。在这一层我们可以做的事情就是根据车辆的统计数据,分析出那些路口在怎样的时段容易造成交通拥堵等信息,以便在应用层进行改善。甚至可以根据识别出来的车牌号信息,对每个车辆的交通使用习惯进行分析,这样也能从宏观上预测出将来可能发生的交通阻塞。3应用层人工智能在应用层的应用与感应层类似,都是在物件这种实体上进行功能上的改进。例如可以利用分析层所传来的指挥信息,智能得调节某些路口的红绿灯。如果整条路上几乎没有车辆的时候,就可以将这条路上的人行横道旁的指示灯全部置为绿色(这个功能并不需要人工智能)。还有很多很多我没有想到的应用,我在此只是抛砖引玉。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/12891100.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存