1、仓库储存:通常采用物联网仓库管理信息系统,完成收货入库、盘点调拨、拣货出库以及整个系统的数据查询、备份、统计、报表生产及报表管理等任务。
2、运输监测:实时监测货物运输中的车辆行驶情况以及货物运输情况,包括货物位置、状态环境以及车辆的油耗、油量、车速及刹车次数等驾驶行为。
3、智能快递柜:将云计算和物联网等技术结合,实现快件存取和后台中心数据处理,通过实时采集、监测货物收发等数据。
二、交通运输环境
1、智能公交车:结合公交车辆的运行特点, 建设公交智能调度系统, 对线路、车辆进行规划调度, 实现智能排班。
2、共享单车:运用带有GPS模块的智能锁, 通过APP相连,实现精准定位、实时掌控车辆状态等。
3、汽车联网:利用先进的传感器及控制技术等实现自动驾驶或智能驾驶,实时监控车辆运行状态,降低交通事故发生率。
4、智慧停车:通过安装地磁感应,连接进入停车场的智能手机,实现停车自动导航、在线查询车位等功能。
5、智能红绿灯:依据车流量,行人及天气等情况,动态调控灯信号,来控制车流,提高道路承载力。
6、汽车电子标识:采用RFID技术,实现对车辆身份的精准识别、车辆信息的动态采集等功能。
7、充电桩:通过物联网设备,实现充电桩定位、充放电控制、状态监测及统一管理等功能。
8、高速无感收费:通过摄像头识别车牌信息,根据路径信息进行收费,提高通行效率、缩短车辆等候时间等。
物联网网关作为一个新名词,将在未来物联网时代发挥非常重要的作用。它将成为感知网络和传统通讯网络之间的纽带。物联网网关作为一种网关设备,能够完成感知网络与通讯网络以及不同类型感知网络之间的协议转化。
网关既能够完成广域互连,也能够完成局域网互连,具备设备办理功能。运营商能够办理底层传感节点,了解每个节点的相关信息,经过物联网网关设备完成长途 *** 控。
物联网云网关
这一部分强调了一个要害点,即物联网网关完成感知网络与通讯网络的互联,但感知网络中有许多不同的协议,如LonWorks、ZigBee、6LoWPAN、rubee等来完成这种互联网,网关有必要具有协议转化才能。一起,网关有两个要害点,即完成广域互联。当广域网不行用时,网关往往能完成局域网互连,即近端之间的交互与协作。
主要功能:
一广泛的访问才能
现在,短程通讯的技能规范许多,只有LonWorks、ZigBee、6LoWPAN、rubee等常用的无线传感器网络技能,各种技能主要是针对某一应用开发的,缺少兼容性和体系规划。现在,国内外现已开展了物联网网关的规范化作业,如3GPP、传感器作业组等,以完成各种通讯技能规范的互联互通。
二可办理性
强壮的办理才能关于任何大型网络都是必不行少的。首先,需要对网关进行办理,如注册办理、权限办理、国家监管等。网关完成了子网中节点的办理,例如获取节点的标识、状况、特点、能量等,以及因为子网的技能规范和协议复杂性的不同,唤醒、 *** 控、确诊、升级和保护等的长途完成,网关具有不同的办理功能。根据物联网的模块化网关来办理不同感知网络、不同应用,保证使用一致的办理接口技能来办理终端网络节点。
三协议转化才能
不同感知网络到接入网络的协议转化,低规范格局的数据一致封装,保证不同感知网络的协议能够成为一致的数据和信令;将上层宣布的数据包分析成可由感知层协议识别的信令和 *** 控指令。
总结这些基本网关才能没有问题,但关于物联网网关来说,要害点之一是网关本身是完成感知层和通讯层的仅有入口和出口通道。外部只需要处理网关,而网关用于调度和 *** 控下面访问和注册的各种类型的传感设备。
因而,网关具有相似于API网关的要害才能,即对传感层中各种传感设备供给的不同类型的协议进行接入和适配,一起在协议接入后能够转化为规范接口协议和通讯层交互。关于实时接口,它能够选用相似的>
一般来说,物联网网关在架构和实现进程中会提供硬件设备,实现协议转化、路由、转发、自动注册办理、南北一体化的接口才能。这个网关通常是布置在局域网端的设备。对于整个云架构,只有网关设备和云能够交互。
边缘计算的终究落地能够在物联网网关层实现,即进一步提高物联网网关的存储和核算才能。一方面,在网关层实现本地收集后的数据自动收集,二次处理后收集上传到云端。另一方面,将云的要害核算规矩和逻辑散布到网关层,支撑网关层的本地化核算。这也是网关层功用的一个要害扩展。
单词释义及物动词 vt
1浸;泡[(+in/into)]
2把(手等)伸入[(+into)]
She dipped her finger in the water to see if it's hot
她把手指浸入水中,看水热不热。
3舀取,汲出[(+out/up)]
She dipped up soup from the pot with a ladle
她用勺从锅里舀汤。
4浸染;浸洗
5把下降后即行升起
不及物动词 vi
1浸一下
2下沉,下降
Meat prices are dipping
肉类价格在下跌。
3倾斜
4舀,掏[(+into)]
She dipped into her purse for money
她在钱包中掏钱。
名词 n
1浸泡;蘸湿[C]
2倾斜;下沉[C]
The road takes a dip round the corner
那条路在转角处往下倾斜。
3(价格的)下跌[C]
The price of grain took a dip
粮食价格下跌。
4口洗澡[C]
We are going for a dip in the sea
我们去洗个海水浴。
5浸泡动物(的药水)[C][U]
6调味汁[C]
7蜡烛[C]
编辑本段
DIP封装
介绍
DIP封装,是dual inline-pin package的缩写,也叫双列直插式封装技术,双入线封装,DRAM的一种元件封装形式。指采用双列直插形式封装 的集成电路芯片,绝大多数中小规模集成电路均采用这种封装形式,其引脚数一般不超过100。
DIP封装的CPU芯片有两排引脚,需要插入到具有DIP结构的芯片插座上。当然,也可 DIP封装以直接插在有相同焊孔数和几何排列的电路板上进行焊接。DIP封装的芯片在从芯片插座上插拔时应特别小心,以免损坏管脚。DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式)等。
特点
适合在PCB(印刷电路板)上穿孔焊接, *** 作方便。
芯片面积与封装面积之间的比值较大,故体积也较大。
最早的4004、8008、8086、8088等CPU都采用了DIP封装,通过其上的两排引脚可插到主板上的插槽或焊接在主板上。
在内存颗粒直接插在主板上的时代,DIP 封装形式曾经十分流行。 DIP还有一种派生方式SDIP(Shrink DIP,紧缩双入线封装),它比DIP的针脚密度要高6六倍。
DIP还是拨码开关的简称,其电气特性为
1电器寿命:每个开关在电压24VDC与电流25mA之下测试,可来 DIP封装回拨动2000次 ;
2开关不常切换的额定电流:100mA,耐压50VDC ;
3开关经常切换的额定电流:25mA,耐压24VDC ;
4接触阻抗:(a)初始值最大50mΩ;(b)测试后最大值100mΩ; DIP封装5绝缘阻抗:最小100mΩ,500VDC ;
6耐压强度:500VAC/1分钟 ;
7极际电容:最大5pF ;
8回路:单接点单选择:DS(S),DP(L) 。
另外,数字方面
DIP(Digital Image Processor)二次元实际影像
用途
采用这种封装方式的芯片有两排引脚,可以直接焊在有DIP结构的芯片插座上或焊在有相同焊孔数的焊位中。其特点是可以很方便地实现PCB板的穿孔焊接,和主板有很好的兼容性。但是由于其封装面积和厚度都比较大,而且引脚在插拔过程中很容易被损坏,可靠性较差。同时这种封装方式由于受工艺的影响,引脚一般都不超过100个。随着CPU内部的高度集成化,DIP封装很快退出了历史舞台。只有在老的VGA/SVGA显卡或BIOS芯片上可以看到它们的“足迹”。
编辑本段
脱屑性间质性肺炎
简介
脱屑性间质性肺炎(desquamativeinterstitialpneumonitis,DIP)是间质性肺炎一种类型,是以气腔单核细胞浸润为特征的慢性肺部炎症。DIP是一种临床及病理上独立的疾病名称,累及30~40岁的吸烟者,大多数病人有气促。其特征为肺泡腔有广泛的大量肺泡细胞脱屑和增生,对类固醇激素反应良好。Liebow等认为是独立的疾病,但Sceding等认为它可能是致纤维化肺泡炎发展中的一个阶段,其他作 脱屑性间质性肺炎者在特发性间质性肺纤维化、嗜伊红细胞肉芽肿、肺蛋白沉着症、类风湿样病长期服用呋喃咀丁等病例中,发现肺脏病理变化亦与脱屑性间质性肺炎有相同之处。
症状
本病可分原发性与继发性二类。原发者发病较急,继发者续发于其他疾病之后。症状颇似弥漫性肺纤维化,发病多隐袭,但也可突然起病。主要表现为呼吸加快、进行性呼吸困难、心率增速、紫绀、干咳、体重减轻、无力和食欲减退。发热多不超过38℃。严重者发生心力衰竭,可于吃奶后突然死亡。查体有时可见杵状指、趾,肺部体征不明显,有时两下肺可听到细湿罗音。X线胸片显示两下肺毛玻璃样或网状、片状阴影,可有边缘不清之模糊三
脱屑性间质性肺炎角形阴影,从肺门沿心缘向肺底及周缘放散。有时可见气肿大泡、气胸及胸腔积液等合并症。远期可并发肺心病。末梢血嗜酸细胞可见增高。
X线表现,两肺有对称性磨玻璃模糊阴影,在肺底部最显著。亦有呈三角形模糊阴影,从肺门向两侧肺底伸展,有时并发自发性气胸或胸水。
病肺肉眼观呈灰、坚实、无气。镜检,最显著的特征是肺泡腔内有大量脱屑颗粒状细胞,大小不等,直径7~8μm;有些细胞呈纺锤状,多核。胞内可含极少的空泡。无碳末。胞浆含多量PAS染色阳性、抗淀粉酶颗粒。常有不含铁的色素颗粒。脂类染色阳性。电子显微镜检查,脱屑细胞多数为巨噬细胞,肺泡上皮细胞及脱屑细胞见核分裂。肺泡上皮细胞增生或肥大。无透明膜形成。有不等量的间质纤维化及网蛋白纤维形成。有时显示粘液瘤的性质。间质肌纤维增生,肺脏变僵硬。常见肺小叶间隔、肺泡隔及胸膜水肿及纤维化。肺泡闭塞不常见。在病变严重的肺区,常有闭塞性肺动脉内膜炎。有局灶淋巴细胞聚集,其中有生发中心。
从临床症状、X线表现只能作出拟诊。经支气管镜或开胸作肺活检,可以确定诊断。Ashen等(1984)所提出的病理诊断标准如下:①肺泡内可见含PAS染色阳性颗粒的巨噬细胞大量聚集;②肺泡内Ⅱ型上皮细胞肿胀及增生;③间质内有淋巴细胞、浆细胞和嗜酸细胞浸润,并有轻度间质纤维化。
编辑本段
软件设计原则
之一:依赖倒转原则 DIP
依赖倒转原则(Dependency Inversion Principle)讲的是:要依赖于抽象,不要依赖于具体。
依赖倒转原则的一种表述是:细节应当依赖于抽象,抽象不应当依赖于细节。
另一种描述是:要针对接口编程,不要针对实现编程。意思就是应当使用接口和抽象类而不是具体类进行变量的类型声明、参数的类型声明、方法的返回类型声明以及数据类型的转换等。要保证这一点,一个具体java类应当只实现java接口和抽象java类中声明过的方法,而不应当给出多余的方法。
java接口与java抽象类的区别:
1java抽象类可以提供某些方法的部分实现,而java接口不可以。
2一个抽象类的实现只能由这个抽象类的子类给出,一个类最多只能从一个超类继承。任何一个实现了一个java接口所规定的方法的类都可以具有这个接口的类型,一个类可以实现任意多个java接口。
3从代码重构的角度来说,使用重构接口比重构抽象类要容易多。
4java接口是定义混合类型(Mixin Type)的理想工具。所谓混合类型,就是一个类的主类型之外的次要类型。
缺省适配模式
声明类型的工作仍然是由java接口承担的,但是同时给出的还有一个java抽象类,为这个接口给出一个缺省实现。其他同属于这个抽象类型的具体类可以选择实现这个java接口,也可以选择继承自这个抽象类。
依赖倒转原则假定所有的具体类都是会变化的,这也不总是正确的。有一些具体类可能是相当稳定的、不会发生变化的,客户端可以直接依赖于这些具体类型,而不必为此声明一个抽象类型。
编辑本段
数据融合点
data integration point 简称DIS 即数据融合点,是物联网技术M2M一个重要组成部分。
编辑本段
蛋白相互作用数据库
DIP 蛋白相互作用数据库(Database of Interacting Protein,DIP)研究生物反应机制的重要工具。DIP 可以用基因的名字等关键词查询,使用上较方便。查询的结果列出节点 (node) 与连结 (link) 两项,节点是叙述所查询的蛋白质的特性,包括蛋白质的功能域(domain)、指纹(fingerprint) 等,若有酶的代码或出现在细胞中的位置,也会一并批注。连结所指的是可能产生的相互作用,DIP 对每一个相互作用都会说明证据(实验的方法)与提供文献,此外,也记录除巨量分析外,支持此相互作用的实验数量。DIP 还可以用序列相似性(使用Blast)、模式 (pattern) 等查询。至2002 年6 月,已收录了约一万八千个蛋白质间的相互作用信息条目。
BIND 所收录的资料较少,不过其呈现的信息方式比DIP 要实用,除了记录相互作用条目外,还特别区分出其中的一些复合物及其反应路径。因为复合物与反应路径中含有多种相互作用,所以至2002 年11 月就收录有的相互作用总数约一万一千多条。在BIND 中所纪录的内容与DIP 相似,包括蛋白质的功能域、在细胞中表达的位置等。对于蛋白质间的相互作用,以文字叙述的方式呈现证据,并提供文献的链接。BIND 这种区分出复合物与路径的作法,让使用者能节省许多解读数据的精力,这是比DIP 强的地方;在查询接口上,除了可以用关键词、序列相似性等搜寻外,还允许使用者浏览数据库中所有的资料。BIND 在收录资料时主要是利用文献,他们提供PreBIND 这个工具,使用者可用PreBind 浏览他们正在处
理的一些可能的交互作用,所提供的文献链接,让使用者可自行判断所寻求的相互作用是否为真。
PubGeneTM是一个文献数据库,收录可能有关的基因或其蛋白质产物。它利用的假设是:两个基因的名字若出现在同一篇文章内,就可能代表它们相关,因此计算同时出现某两个基因名字的文章篇数,可作为其收录的准则。这个数据库分别收录了人类、小鼠、大鼠中,已知基因的所有两两组合。虽然这样的作法,无法精确地区分两个基因是因为出现在基因组上的邻近位置,或是有相似的基因表达模式,或是蛋白质间可能有的相互作用,却可有助于使用者研究感兴趣但在DIP、BIND 中找不到的蛋白质。
编辑本段
缺陷干扰颗粒
缺陷干扰颗粒(defective interfering particles,DIP)不能复制的缺陷病毒,但具有干扰同种成熟病毒进入细胞的能力,且能在细胞内增值。
编辑本段
定期租船交船地点
DIP——drop inward pilot
定期租船合同中约定某一船港口时,通常还约定在港口内的某一点交船,DIP是指当船舶进港且引水员上船时看做交船完毕。
编辑本段
设备独立像素
dip或dp,(device independent pixels,设备独立像素),一般为了支持WVGA、HVGA和QVGA使用这个,不依赖像素。
在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实部称为电阻,虚部称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗 ,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。 阻抗的单位是欧姆。阻抗的概念不仅存在与电路中,在力学的振动系统中也有涉及。
基本介绍 中文名 :阻抗 外文名 :impedance 性质 :物理量 含义 :电阻与电抗在向量上的和 名词解释,电学解释,力学解释,阻抗公式,生活中的“阻抗”,阻抗匹配技术,输入阻抗,输出阻抗,匹配的概念,如何匹配,相关研究, 名词解释 电学解释 阻抗是表示元件性能或一段电路电性能的物理量。交流电路中一段无源电路两端电压峰值(或有效值)Um与通过该电路电流峰值(或有效值)Im之比称为阻抗,用z表示,单位为欧姆(Ω)。在U一定的情况下,z越大则I越小,阻抗对电流有限制的作用。 在电流中,物体对电流阻碍的作用叫做电阻。除了超导体外,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑胶等。还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值等于零的物质,不过它要求在足够低的温度和足够弱的磁场下,其电阻率才为零。 在直流电和交流电中,电阻对两种电流都有阻碍作用;作为常见元器件,除了电阻还有电容和电感,这两者对交流电和直流电的作用就不像电阻那样都有阻碍作用了。电容是“隔直通交”,就是对直流电有隔断作用,就是直流不能通过,而交流电可以通过,而且随着电容值的增大或者交流电的增大,电容对交流电的阻碍作用越小,这种阻碍作用可以理解为“电阻”,但是不等同于电阻,这是一种电抗,电抗和电阻单位一样,合称“阻抗”。当然,准确的说,“阻抗”应该有三个部分,除了这两个,就是“感抗”。感抗就是电感对电流的阻碍作用,和电容不同,电感对直流电无阻碍作用(如果严谨的研究的话,在通电达到饱和之前的那个短暂的几毫秒的暂态内,也是有阻碍的)对交流有阻碍作用,感抗的单位和容抗以及电阻的单位都一样是欧姆。 力学解释 阻抗、抗、阻的概念不只存在在电路中,在振动系统中,阻抗也用Z表示,是一个复数,也是一个相量(Phasor),含有Magnitude和Phase/Polarity。由阻(Resistance)和抗(Reactance)组成。阻(resistance)是对能量的消耗,而抗(reactance)是对能量的保存。在振动系统中,由质量产生的抗,是质量抗(mass resistance),而由劲度(stiffness)产生的抗,是劲度抗(stiffness resistance)。 阻抗公式 Z= R+i( ωL–1/ ( ωC ) ) 说明: 负载是电阻、电感的感抗、电容的容抗三种类型的复物,复合后统称“阻抗”,写成数学公式即是:阻抗 Z= R+i(ωL–1/ ( ωC ) ) 。其中R为电阻, ω L为感抗,1/( ω C)为容抗。 (1)如果( ω L–1/ ω C) > 0,称为“感性负载”; (2)反之,如果( ω L–1/ ω C) < 0称为“容性负载”。 生活中的“阻抗” 在音响器材中,阻抗是常常提及的重要参数。例如扩音机与喇叭的阻抗多设计为8欧姆,因为在这个阻抗值下,机器有最佳的工作状态。其实喇叭的阻抗是随着频率高低的不同而变动的,喇叭规格中所标示的通常是一个大略的平均值,市面上的产品大都是四欧姆、六欧姆或八欧姆。 此外,阻抗还是耳机的重要参数。耳机的阻抗是其交流阻抗的简称,单位为欧姆(Ω)。一般来说,阻抗越小,耳机就越容易出声、越容易驱动。耳机的阻抗是随其所重放的音频信号的频率而改变的,一般耳机阻抗在低频最大,因此对低频的衰减要大于高频的;对大多数耳机而言,增大输出阻抗会使声音更暗更混(此时功放对耳机驱动单元的控制也会变弱),但某些耳机却需要在高阻抗下才更好听。如果耳机声音尖锐刺耳,可以考虑增大耳机插孔的有效输出阻抗;如果耳机声音暗淡浑浊,并且是通过功率放大器驱动的,则可以考虑减小有效输出电阻。 不同阻抗的耳机主要用于不同的场合,在台式机或功放、VCD、DVD、电视、电脑等设备上,常用到的是高阻抗耳机,有些专业耳机阻抗甚至会在200欧姆以上,这是为了与专业机上的耳机插口匹配,此时如果使用低阻抗耳机,一定先要把音量调低再插上耳机,再一点点把音量调上去,防止耳机过载将耳机烧坏或是音圈变形错位造成破音。而对于各种携带型随身听,例如CD、MD或MP3,一般会使用低阻抗耳机(通常都在50欧姆以下),这是因为这些低阻抗耳机比较容易驱动,同时还要注意灵敏度要高,对随身听、MP3来说灵敏度指标更加重要。当然,阻抗越高的耳机搭配输出功率大的音源时声音效果更好。 阻抗匹配技术 输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗R就是U/I。你可以把输入端想像成一个电阻的两端,这个电阻的阻值,就是输入阻抗。输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。)另外如果要获取最大输出功率时,也要考虑 阻抗匹配问题。 电机转子交流阻抗测试仪 输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意。 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问)。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的。 匹配的概念 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的,我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2) =U2×R/[(R-r)2+4×R×r] =U2/{[(R-r)2/R]+4×r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。 当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。 例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75Ω,所以300Ω的馈线将与其不能匹配。实际中是如何解决这个问题的呢?不知道大家有没有留意到,电视机的附属档案中,有一个300Ω到75Ω的阻抗转换器(一个塑胶封装的,一端有一个圆形的插头的那个东东,大概有两个大拇指那么大)。它里面其实就是一个传输线变压器,将300Ω的阻抗,变换成75Ω的,这样就可以匹配起来了。这里需要强调一点的是,特性阻抗跟我们通常理解的电阻不是一个概念,它与传输线的长度无关,也不能通过使用欧姆表来测量。为了不产生反射,负载阻抗跟传输线的特征阻抗应该相等,这就是传输线的阻抗匹配,如果阻抗不匹配会有什么不良后果呢?如果不匹配,则会形成反射,能量传递不过去,降低效率;会在传输线上形成驻波(简单的理解,就是有些地方信号强,有些地方信号弱),导致传输线的有效功率容量降低;功率发射不出去,甚至会损坏发射设备。如果是电路板上的高速信号线与负载阻抗不匹配时,会产生震荡,辐射干扰等。 当阻抗不匹配时,有哪些办法让它匹配呢?第一,可以考虑使用变压器来做阻抗转换,就像上面所说的电视机中的那个例子那样。第二,可以考虑使用串联/并联电容或电感的办法,这在调试射频电路时常使用。第三,可以考虑使用串联/并联电阻的办法。一些驱动器的阻抗比较低,可以串联一个合适的电阻来跟传输线匹配,例如高速信号线,有时会串联一个几十欧的电阻。而一些接收器的输入阻抗则比较高,可以使用并联电阻的方法,来跟传输线匹配,例如,485汇流排接收器,常在数据线终端并联120欧的匹配电阻。 如何匹配 大体上,阻抗匹配有两种,一种是通过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(tran ission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表(史密斯圆圈)上。 改变阻抗力 把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿着代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重复以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 调整传输线 由负载点至来源点加长传输线,在图表上的圆点会沿着图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配。 阻抗匹配则传输功率大,对于一个电源来讲,当它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了。反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便。 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,在高科技领域中称的超导体,则是一种电阻值几近于零的东西。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 相关研究 在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的套用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。 例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配。 1.串联终端匹配 串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。 串联终端匹配后的信号传输具有以下特点: A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播 B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。 C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同 D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收 E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。 相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。 选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电源电压为+45V的CMOS驱动器,在低电平时典型的输出阻抗为37Ω,在高电平时典型的输出阻抗为45Ω[4];TTL驱动器和CMOS驱动一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS 电路来说,不可能有十分正确的匹配电阻,只能折中考虑。 链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。否则,接到传输线中间的负载接受到的波形就会象图325中C点的电压波形一样。可以看出,有一段时间负载端信号幅度为原始信号幅度的一半。显然这时候信号处在不定逻辑状态,信号的噪声容限很低。 串联匹配是最常用的终端匹配方法。它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件。 2.并联终端匹配 并联终端匹配的理论出发点是在信号源端阻抗很大的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。实现形式分为单电阻和双电阻两种形式。 并联终端匹配后的信号传输具有以下特点: A 驱动信号近似以满幅度沿传输线传播 B 所有的反射都被匹配电阻吸收 C 负载端接受到的信号幅度与源端传送的信号幅度近似相同。 在实际的电路系统中,晶片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等。假定传输线的特征阻抗为50Ω,则R值为50Ω。如果信号的高电平为5V,则信号的静态电流将达到100mA。由于典型的TTL或CMOS电路的驱动能力很小,这种单电阻的并联匹配方式很少出现在这些电路中。 双电阻形式的并联匹配,也被称作戴维南终端匹配,要求的电流驱动能力比单电阻形式小。这是因为两电阻的并联值与传输线的特征阻抗相匹配,每个电阻都比传输线的特征阻抗大。考虑到晶片的驱动能力,两个电阻值的选择必须遵循三个原则:⑴. 两电阻的并联值与传输线的特征阻抗相等 ⑵.与电源连线的电阻值不能太小,以免信号为低电平时驱动电流过大 ⑶.与地连线的电阻值不能太小,以免信号为高电平时驱动电流过大。 并联终端匹配优点是简单易行;显而易见的缺点是会带来直流功耗:单电阻方式的直流功耗与信号的占空比紧密相关?;双电阻方式则无论信号是高电平还是低电平都有直流功耗。因而不适用于电池供电系统等对功耗要求高的系统。另外,单电阻方式由于驱动能力问题在一般的TTL、CMOS系统中没有套用,而双电阻方式需要两个元件,这就对PCB的板面积提出了要求,因此不适合用于高密度印刷电路板。 当然还有:AC终端匹配; 基于二极体的电压钳位等匹配方式。 二、送水浇花 2.1 数位系统之多层板讯号线(Signal Line)中,当出现方波讯号的传输时,可将之假想成为软管(hose)送水浇花。一端于手握处加压使其射出水柱,另一端接在水龙头。当握管处所施压的力道恰好,而让水柱的射程正确洒落在目标区时,则施与受两者皆欢而顺利完成使命,岂非一种得心应手的小小成就? 2.2 然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源,甚至还可能因强力水压无处宣泄,以致往来源反d造成软管自龙头上的挣脱!不仅任务失败横生挫折,而且还大捅纰漏满脸豆花呢! 2.3 反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。过犹不及皆非所欲,唯有恰到好处才能正中下怀皆大欢喜。 2.4 上述简单的生活细节,正可用以说明方波(Square Wave)讯号(Signal)在多层板传输线(Tran ission Line,系由讯号线、介质层、及接地层三者所共同组成)中所进行的快速传送。此时可将传输线(常见者有同轴电缆Coaxial Cable,与微带线Microstrip Line或带线Strip Line等)看成软管,而握管处所施加的压力,就好比板面上“接受端”(Receiver)元件所并联到Gnd的电阻器一般,可用以调节其终点的特性阻抗(Characteristic Impedance),使匹配接受端元件内部的需求。 三、控管技术 3.1 由上可知当“讯号”在传输线中飞驰旅行而到达终点,欲进入接受元件(如CPU或Meomery等大小不同的IC)中工作时,则该讯号线本身所具备的“特性阻抗”,必须要与终端元件内部的电子阻抗相互匹配才行,如此才不致任务失败白忙一场。用术语说就是正确执行指令,减少杂讯干扰,避免错误动作”。一旦彼此未能匹配时,则必将会有少许能量回头朝向“传送端”反d,进而形成反射杂讯(Noise)的烦恼。 3.2 当传输线本身的特性阻抗(Z0)被设计者订定为28ohm时,则终端控管的接地的电阻器(Zt)也必须是28ohm,如此才能协助传输线对Z0的保持,使整体得以稳定在28 ohm的设计数值。也唯有在此种Z0=Zt的匹配情形下,讯号的传输才会最具效率,其“讯号完整性”(Signal Integrity,为讯号品质之专用术语)也才最好。 四、特性阻抗 4.1 当某讯号方波,在传输线组合体的讯号线中,以高准位(High Level)的正压讯号向前推进时,则距其最近的参考层(如接地层)中,理论上必有被该电场所感应出来的负压讯号伴随前行(等于正压讯号反向的回归路径Return Path),如此将可完成整体性的回路(Loop)系统。该“讯号”前行中若将其飞行时间暂短加以冻结,即可想像其所遭受到来自讯号线、介质层与参考层等所共同呈现的瞬间阻抗值(Instantanious Impedance),此即所谓的“特性阻抗”。 是故该“特性阻抗”应与讯号线之线宽(w)、线厚(t)、介质厚度(h)与介质常数(Dk)都扯上了关系。 4.2 阻抗匹配不良的后果 由于高频讯号的“特性阻抗”(Z0)原词甚长,故一般均简称之为“阻抗”。读者千万要小心,此与低频AC交流电(60Hz)其电线(并非传输线)中,所出现的阻抗值(Z)并不完全相同。数位系统当整条传输线的Z0都能管理妥善,而控制在某一范围内(±10﹪或±5﹪)者,此品质良好的传输线,将可使得杂讯减少,而误动作也可避免。 但当上述微带线中Z0的四种变数(w、t、h、 r)有任一项发生异常,例如讯号线出现缺口时,将使得原来的Z0突然上升(见上述公式中之Z0与W成反比的事实),而无法继续维持应有的稳定均匀(Continuous)时,则其讯号的能量必然会发生部分前进,而部分却反d反射的缺失。如此将无法避免杂讯及误动作了。例如浇花的软管突然被踩住,造成软管两端都出现异常,正好可说明上述特性阻抗匹配不良的问题。 4.3 阻抗匹配不良造成杂讯。上述部分讯号能量的反d,将造成原来良好品质的方波讯号,立即出现异常的变形(即发生高准位向上的Overshoot,与低准位向下的Undershoot,以及二者后续的Ringing)。此等高频杂讯严重时还会引发误动作,而且当时脉速度愈快时杂讯愈多也愈容易出错。 那么是否什么时候都要考虑阻抗匹配? 在普通的宽频带放大器中,因为输出阻抗为50Ω,所以需要考虑在功率传输电路中进行阻抗匹配。但是,实际上当电缆的长度对于信号的波长来说可以忽略不计时,就勿需阻抗匹配的。 考虑信号频率为1MHz,其波长在空气中为300m,在同轴电缆中约为200m。在通常使用的长度为1m左右的同轴电缆中,是在完全可忽略的范围之内。
接地电阻当然是越小越好,根据设备的不同要求,标准为4--10欧姆,最高不能大于10欧姆,4欧姆以下更好,可是一般很难做到
标准接地电阻规范要求:
1、独立的防雷保护接地电阻应小于等于10欧;
2、独立的安全保护接地电阻应小于等于4欧;
3、独立的交流工作接地电阻应小于等于4欧;
4、独立的直流工作接地电阻应小于等于4欧;
5、共用接地体(联合接地)应不大于接地电阻1欧。
扩展资料:
影响接地电阻的因素很多:接地极的大小(长度、粗细)、形状、数量、埋设深度、周围地理环境(如平地、沟渠、坡地是不同的)、土壤湿度、质地等等。为了保证设备的良好接地,利用仪表对接地电阻进行测量是必不可少的。
接地电阻的测量方法可分为:电压电流表法、比率计法和电桥法。按具体测量仪器及布极数可分为:手摇式地阻表法、钳形地阻表法、电压电流表法、三极法和四极法。
在测接地电阻时,有些因素造成接地电阻不准确:
(1)地网周边土壤构成不一致,地质不一,紧密、干湿程度不一样,具有分散性,地表面杂散电流、特别是架空地线、地下水管、电缆外皮等等,对测试影响特别大。解决的方法:取不同的点进行测量,取平均值。
(2)测试线方向不对,距离不够长。解决的方法:找准测试方向和距离。
(3)辅助接地极电阻过大。解决的方法:在地桩处泼水或使用降阻剂降低电流极的接地电阻。
(4)测试夹与接地测量点接触电阻过大。解决的方法:将接触点用锉刀或砂纸磨光,用测试线夹子充分夹好磨光触点。
(5)干扰影响。解决的方法:调整放线方向,尽量避开干扰大的方向,使仪表读数减少跳动。
(6)仪表使用问题。电池电量不足,解决的方法:更换电池。
(7)仪表精确度下降。解决的方法:重新校准为零。
接地电阻的测试值的准确性,是判断接地是否良好的重要因素之一。测试值一旦不准确,要不浪费人力物力(测值偏大),要不就会给接地设备带来安全隐患(测值偏小)。
测量仪器
(1)接地电阻的测量工作有时在野外进行,因此,测量仪表应坚固可靠,机内自带电源,重量轻、体积小,并对恶劣环境有较强的适应能力。
(2)大于20dB以上的抗干扰能力,能防止土壤中的杂散电流或电磁感应的干扰。
(3)仪表应具有大于500kW的输入阻抗,以便减少因辅助极棒探针和土壤间接触电阻引起的测量误差。
(4)仪表内测量信号的频率应在25Hz~1kHz之间,测量信号频率太低和太高易产生极化影响,或测试极棒引线间感应作用的增加,使引线间电感或电容的作用,造成较大的测量误差,即布极误差。
(5)在耗电量允许的情况下,应尽量提高测试电流,较大的测试电流有利于提高仪表的抗干扰性能。
(6)仪表应 *** 作简单,读数最好是数字显示,以减少读数误差。
参考资料:
天线频率必须和无线设备频率匹配,否则通信效果不佳。
扩展资料:
选择天线的主要指标包含:频率范围、驻波比SWR或VSWR、天线增益、极化方式和阻抗。
频率范围按需选择,各个国家对频率的使用是有要求的,例如:
24G/58G 家用路由器频率
24G 全球免费通用频段,家用路由器,无线模块,数传电台,实时遥控
915M 北美免费通用频段
868M 欧盟免费通用频段
780M 中国新开物联网频段
470M 中国国家电网计量频段,无线抄表
433M 中国免费通用频段
315M 遥控
350M 警用频段
230M 中国电力系统专用频段
169M 欧盟无线抄表频段
驻波比最好≤15,要特别注意驻波比参数,购买天线后最好用网络分析仪测试一下SWR5;
天线增益对传输距离也有影响,天线增益越高,信号越好,传输距离也越远,但增益越高,垂直方向的覆盖范围就越小,所以在选择天线的时候,还需要考虑到实际应用环境;
极化方式分为线性极化和圆极化;
阻抗需要与无线模块的输出阻抗匹配,一般为50欧姆。
导致你这种现象的原因很多,下列几个方面也是这种现象产生的根源,你不妨按下面几个方面去仔细的完全、彻底的进行检查;你的问题不就解决了。★版权申明:本答案为和谐原创,任何人不得盗用!★1:检查电源(全国两网改造后,包括边远山区9998的电压都合格,没有低电压的;低电压是由用户线径过细所引起的,更换进户线就可以了) 11用万用表检查电源是否稳定?12交流电压波动是否在允许范围内? 13A/D变换电源后的纹波系数(用毫伏表检查)是否合格?14电源的温升是否异常? 15稳压特性是否符合技术指标?16额定负载下稳压特性和纹波系数是否符合技术指标?17更换大的风扇时,你的电源容量是否满足要求?18一般辅助设备(路由器、网络交换机、猫等)的电源都是整流电源,没有稳压功能,纹波系数较大(可能是滤波电容干枯所致),负载能力也较差;应特别注意。19由于设备过电压(像给孩子喂食一样,多了能撑死)、低电压(像给孩子喂食一样,少了会营养不良)、电压波动过大(如同给孩子吃饭,饥一顿、饱一顿的不定量)、过电流、发热,导致过热保护动作切出故障并将设备退出运行(即:会产生慢、延迟、重复启动、延迟、掉线、中断、断线、自动关机、死机等显现像)等;110电源的过流保护和过热保护是否正确动作?动作是否灵敏?是否拒动或误动?2:检查网络线和水晶头(R45):21水晶头与座是否插好(松动吗)?22接触是否良好?接触电阻是多少?23是否有积灰?是否氧化?24水晶头与座机械闭锁是否已经闭锁?25闭锁是否牢固?26网络线与水晶头是否压紧并接触良好?27网络线的线间绝缘电阻(采用100V的摇表),应大于20兆欧。 ★版权申明:本答案为和谐原创,任何人不得盗用!★3:防雷、接地:接地主要是保障人身和设备的安全!雷击会烧网卡;严重时可引起火灾和人员伤亡事故!多点接地、重复接地、就近接地是原则;接地分为保护接地、屏蔽接地、工作接地等;静电是造成死机蓝屏的罪魁祸首!我用杂音计测试不接地时的杂音电压大于信号6000多倍,你不接地,这样高的杂音你设备能工作吗?接地是做IT的最基本的要求,模拟设备是这样,数字电路更是这样,来自各方面的干扰都可以通过接地予以消减或消除,外来干扰和本地、本机间布线的线间耦合都可以消减和消除,做好设备的接地屏蔽工作,很多干扰来自于屏蔽不好、接地不良,很多人都是只在软件上做工作,许多干扰都是由接地不良或没有接地所引起的,这种故障十分容易产生,也容易被很多人忽视,很多设备损坏与接地有直接关系,没有接地或接地不良都会导致码间干扰、误码、延迟、丢包、断续、掉线(断线、中断)、死机、卡、自动关机、反复启动、重复启动、频繁重启(或反复用连接)等现象。接地必须有两个以上的接地极,每个接地极之间最少间隔10米以上,接地极至机房的接地线不得有任何接头,分别用截面不小于25平方毫米的软铜线引入到机房的汇流排(中间不允许有任何接头),接地线与法拉第网对称连接以利于分流散流,与汇流排连接点要涂覆银粉导电膏,每个设备至汇流排(独立)的接地线截面不得小于4平方米多股软铜线,汇流排对每个接地极的接地电阻小于5欧姆(越小越好)。每年最少使用接地仪(25级以上的接地仪测量,且仪表在检验合格期范围内)检查两次以上。检查接地极时,严禁在雷雨天气下进行。严禁用自来水管和电力线的N零线作为接地使用;也就是独立的接地装置。每台设备的线独立的连接于机房的汇流排,严禁串接后再接汇流排。我可以很主观的说:无论你是个人用户还是大型机房的集体用户,你根本就没有接地(或接地不合格)。★版权申明:本答案为和谐原创,任何人不得盗用!★4:带宽:自运营商到用户的带宽十分重要,没有足够的带宽,就不能保证足够的数据流量;计算机上网就不可能流畅;上述所说的带宽是指全程的带宽,像高速公路上一样,有那么宽的带宽,全程不能有起伏现象;全程有一点起伏就会影响网络速度;用户有权要求运营商(用扫频仪测试)给予保障;5:信杂比:(信号与杂音之比,可以理解成信号的纯净度)较小时,有用的信号被嘈杂的杂散信号所掩盖没(特别是码元间的码间干扰),使收信之路不能在嘈杂的信号里正确提取到有用的信号,判断电路就无法对码元进行正确的判断,就会产生误码、严重的误码就是丢包,严重的丢包就是延迟产生的原因,严重的延迟就会就是掉线(会产生慢、延迟、重复启动、掉线、延迟、掉线、中断、断线、自动关机、死机等显现像等),使用杂音计或电平表测量杂音电平是否在允许范围内,或者用示波器观察是否存在杂散信号?是否在码间存在码间干扰?采取措施,予以消除。信杂比也要大于60dB以上。用扫频仪和示波器测试(观察)。这项指标是保障道路平坦无障碍。有那么宽的道路,还要全程无障碍。6:匹配:匹配包括电平皮配和阻抗匹配(用电平表及信号发生器测试)61电平匹配:接收信号不能太低,太低时,达不到接收之路需要的门槛电平幅度,设备不能正常工作;电平太高会使接收之路前置电路饱和或烧坏前置电路。接收电平在接收门槛附近波动,就会使计算机频繁重复的重启现象;因此,接收电平调整十分重要。运行中要经常使用电平表或示波器,监视、调整连接处的接收电平在合适的幅度范围内。根据说明书,用电平表监视调整。62:阻抗匹配:连接点必须做到阻抗相对的匹配,输入输出阻抗不匹配就会导致反射衰耗,信号再强也不能正常工作。7:优化网络结构 人们打开计算机上网就会产生垃圾如同吃饭,不收拾餐桌、不刷洗餐具、不清理灶具一样会产生计算机垃圾,计算机就会逐渐表现为慢、卡、延迟、重复启动、掉线等故障;因此,个人推荐使用一些小工具:比如超级兔子、优化大师、鲁大师或360等;养成下线前予以清理垃圾的好习惯。71:及时清除上网产生的垃圾碎片和IE缓存:只要你使用计算机就会产生垃圾,不及时清理,就会越积累越多,长时间不清理就会使运行C盘空间越来越小及杂乱无章,最后就逐渐的慢下来,直至死机;因此,定期整理运行C盘,可以保持计算机运行速度。72:先让ADSL设备同步:把设备断电后重启。8:软件设置和配置 81:常用软件下载软件尽量到大的官方网站下载,做到3不装,非正规软件不装,P2P(占用资源)类软件不装,不常用软件不装关掉所有不必要的网络连接和启动项,比如迅雷、 BT、驴子等;非运行的软件不要放在运行c盘里面;实时更新补丁。游戏软件要倒正规的大型网站下载,注意软件是否稳定,不成熟、不稳定的软件会导致慢、卡、死机等故障,特别是一些大众喜欢的游戏软件,一些网友对此反映很强烈,这样的软件特别注意或立即删除;下载软件时,要注意流氓软件借机插入危急计算机的安全,随时给予清除。有些游戏软件开始之后,游戏就会直接被T掉,上来之后会无限掉线、重启等故障。协议:网络中的协议也要与之匹配,不匹配也会造成设备一些故障。软件的冲突同样会造成延迟、卡、慢、死机、掉线、中断等问题的产生。82:杀毒软件和防火墙 至少一款有效正版的杀毒软件并经常升级病毒库:防火墙设置适当(不要过多、过高、过低),会造成一些网页打不开;病毒可使计算机变慢、死机、掉线、卡、重复启动和开关机故障。9:温度、湿度、温升 (开机后温度在逐渐升高)随着开机时间的延长,主设备及其辅助(猫、路由器、网络交换机等)设备的温度,就会逐渐的升高,如果不能快速散发出去,就会由延迟---慢---掉线----死机。91:湿度:下雨季节或多雨天及其高湿度地区,线路及器件间的绝缘降低,信号电平下跌,导致计算机码间干扰、误码、延迟、丢包、断续、掉线(短线或中断)、死机、自动关机、反复启动(重复连接)等现象、或不稳定工作。湿度加速氧化,导致传输中断。
92:温度(近期随着气温的逐渐升高,由温度引起的故障会逐渐增加):从开机始,温度在逐渐的升高,温升至一定时,就会稳定在这个数值,这个数值与环境温度之差不应该大于25度;由于计算机属于半导体器件,因此要求器件的实际温度不得高于85度;芯片温度接近80度时要采取措施降低猫、路由器、网络交换机和计算机设备工作环境温度。如果超出这个范围计算机就会产生码间干扰、误码、延迟、丢包、断续、掉线(断线或中断)、死机、自动关机、反复启动(频繁连接)等现象。93:温升(设备的实际温度与环境温度的差值叫做温升)小于25摄氏度 温度对设备的正常运行影响很大特别是网络交换机、路由器、计算机主板芯片、网卡等温升较大时,设备就会无法运行;特别是手提(也叫笔记本)计算机,由于设计优先考虑体积而致使温升的散热困难,最容易发生温升所导致的码间干扰、误码、延迟、丢包、断续、掉线(短线或中断)、死机、自动关机、反复启动(重复连接)等现象。措施如下:a:将设备(系指:哈勃、猫、路由器或者网络交换机、计算机等)置于对人较安全地方,首先断开电源,再打开设备的盒盖,利用空气对流加强与空气接触,进行自然散热;
b:给设备加装微型风扇,增大空气的对流,进行强制散热;
c:如果你是做IT的,我建议你:断开电源后,给设备的发热部件加装散热片。
d:设备断开电源后,用3毫米钻头在设备上下钻多多的孔,加强空气的对流量,改善散热条件;e:将设备至于通风干燥处,最好做个(市面上也有用于笔记本的)绝缘散热支架,把设备支起来,进行自然散热;f:计算机使用时间较长后,CPU与散热片之间的硅胶干枯时,CPU会严重的发热,会产生丢包、延迟、慢、重复启动、掉线、中断、断线、自动关机、死机等现像。重新涂覆硅胶,即可恢复正常使用。
g:及时清除上网产生的垃圾碎片和IE缓存:只要你使用计算机就会产生垃圾,不及时清理,就会越积累越多,长时间不清理就会使运行C盘空间越来越小及杂乱无章,最后就逐渐的慢下来,直至死机;因此,定期整理运行C盘,可以保持计算机运行速度。
h:先让ADSL设备同步:把设备断电后重启。经常上网的用户最多半年,要断电后打开设备的外壳(顺便检查设备内部连接是否良好,内存条是否松动,内存条与卡槽接触是否良好?各插件是否松动?插紧了没有?个连接点是否牢固并接触良好),清理设备里面的灰尘。十:布线:布线工艺以最小干扰为原则;要求布线整齐美观,强弱信号分开走,高低频信号分开走,布线不合理就会产生线间耦合、串扰所造成的干扰,线间不能互相缠绕,最好使用屏蔽(屏蔽层可靠且接地)线,这些寄生干扰会使计算机信杂比降低而无法识别有用的信号,使其产生码间干扰、误码、延迟、丢包、断续、掉线(短线或中断)、死机、自动关机、反复启动(重复连接)等现象。★版权申明:本答案为和谐原创,任何人不得盗用!★十一:主板的纽扣电池 电池容量不够或无电量,也会不能开机或产生其他故障。十二:ADSL用户:与电话线一起复用计算机信号,注意取机、挂机、振铃三种状态下对计算机的的影响;由于计算机与电话信号都在电话线上(复用)传输,两者之间必须提供一定的隔离度(大于60dB)、防卫度要大于60dbB越大越好),特别是一些非正规的话机会影响计算机的使用。十三:定时故障:设备在固定的时间出现故障时,要仔细周围及其传输路径之间是否有大的工厂或固定时间大的电气设备启动,电焊等启动设备。十四:win7速度慢的解决方法比较好的方法应该是这样:进入Windows7控制面板,找到并打开颜色管理。在打开的颜色管理对话框中,切换到高级选项卡,然后单击左下角的更改系统默认值。随后,系统将会再次d出一个对话框颜色管理-系统默认值。在此对话框中同样切换到高级选项,然后取消系统默认勾选的使用Windows显示器校准修改完毕后,保存设置退出。★版权申明:本答案为和谐原创,任何人不得盗用!★只要你仔细的按照上面所说的做到、并保持经常做到,一般(我计算机128M内存,CPU主频16G,ADSL/512Kbit的宽带,硬盘20G)的配置,玩中档游戏都相当的流畅;否则:配置再高的计算机,也一样会频发故障;关键看什么人用;素质高的人用,配置低一点,也一样流畅;素质低的人,配置再高,也故障频发;像人穿衣服(小品:好人和坏人中的陈佩斯:你给他再好的衣服,他都上不了档次!)一样,衣服不在档次高低,洁净利索就是好。有一句话叫:事在人为!别做:窝囊废!★版权申明:本答案为和谐原创,任何人不得盗用!★
别忘采纳我的答案!!485总线是一种通讯技术。是一种类似于can总线,powerbus总线这样的通讯芯片。而这种技术的一种应用就是应用在智能家居中,用于灯控调光,窗帘控制,温湿度控制,家用电气控制等等。智能家居是物联网的一个趋势,感觉以后会普遍应用的。不过智能家居多用powerbus总线,是一个国产的芯片。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)