我国制造业面临着异常严峻的挑战:人口红利消失、“未富先老”、企业招工难,人工成本迅速上升;高房价、高地价迫使国内制造业向内地转移,低成本制造业向东南亚国家转移;高赋税以及社保费用的压力也给企业带来高昂的运营成本;原材料价格上涨对下游行业带来巨大的成本压力;环保风暴也给很多企业敲响了警钟;中兴事件则暴露出我国制造业核心技术缺失的尴尬现状;而国际贸易争端更是对出口型企业雪上加霜。
在这种背景下,制造企业如何实现转型升级?推进智能制造成为重要的途径。然而,目前我国制造企业推进智能制造面临着诸多难点与问题:
第一,概念满天飞,技术一大堆。近几年来,从工业40的热潮开始,智能制造、信息物理系统(CPS)、工业互联网(平台)、企业上云、工业APP、人工智能、工业大数据、数字工厂、数字经济、数字化转型、C2B(C2M)等概念接踵而至,对于大多数制造企业而言,可以说是眼花缭乱、无所适从。智能制造涉及的技术非常多,例如云计算、边缘计算、RFID、工业机器人、机器视觉、立体仓库、AGV、虚拟现实/增强现实、三维打印/增材制造、工业安全、时间敏感网络、深度学习、数字孪生、MBD、预测性维护,让企业目不暇接。这些技术看起来都很美,但如何应用,如何取得实效?很多企业还不得而知。
第二,摸着石头过河。企业推进智能制造领域的相关技术十分缺乏经验,欠缺可以借鉴的成功案例。目前,制造企业已经存在3种类型的孤岛:信息孤岛、自动化孤岛,以及信息系统与自动化系统之间的孤岛。同时,企业也缺乏统一的部门来系统规划和推进智能制造。在实际推进智能制造的过程中,企业仍然是“头痛医头”,缺乏章法。
第三,理想很丰满,现实很骨感。推进智能制造,前景很美好。但是绝大多数制造企业利润率很低,缺乏自主资金投入。在“专项”“示范”以及“机器换人”等政策刺激下,一些国有企业和大型民营企业争取到各级政府给予的资金扶持,而中小企业只能“隔岸观火”,自力更生。
第四,自动化、数字化还是智能化?在推进智能制造过程中,不少企业对于建立无人工厂、黑灯工厂跃跃欲试,认为这就是智能工厂。而实际上,高度自动化是工业30的理念。对于大批量生产的产品,国外的优秀企业早就实现了无人工厂。例如,日本发那科仅需40s就能全自动装配完成一个伺服电机,但其前提是产品的标准化、系列化,以及面向自动化装配的设计,例如将需要用线缆进行插装的结构改为插座式的结构。e-works两次组团参观三菱电机的名古屋制作所可儿工厂,该工厂对于大批量生产的产品,大量应用机械手,实现高度自动化;对于中小批量的产品,推进低成本自动化,即部分工位的自动化;而对于单件定制的产品,采取手工装配。e-works考察团还参观施耐德电气的法国诺曼底工厂,该工厂是生产继电器的自动化工厂,该工厂实现了绕线、装配、包装等全流程的自动化,而且可以在一条产线生产多种变型产品,但实际上还不是智能工厂。还有西门子一直将被广泛誉为工业40典范的安贝格电子工厂也是被称为数字化工厂,其特点是人机协作的柔性自动化生产、智能物流、工业软件广泛应用、海量的数据采集以及大数据分析。
一个真正的智能工厂,应该是精益、柔性、绿色、节能和数据驱动,能够适应多品种小批量生产模式的工厂。智能工厂不是无人工厂,却是少人化和人机协作的工厂,推进智能工厂绝不是简单地实现机器换人。南京的爱立信工厂有一条装配线,一开始设置的自动化率是90%,后来发现调整为70%,增加若干人工工位,整体质量和效率反而是最优的。此外,对于装备制造行业,机加工等工序并不适合建立自动化生产线,而建立柔性制造系统(FMS)则是更现实的选择。马扎克(MAZAK)、发那科(FANUC)的机加工车间应用FMS已达到720小时无人值守,自动生产不同的机械零件。

图1 MAZAK的FMS(柔性制造系统)
第五,理性看待投资回报。制造企业的企业家,尤其是中小型民营企业的老板,非常关心投资回报。很多企业的要求就是必须能够在3~4年能够收回投资的信息化、自动化系统才投入,甚至有的期望值更高。然而,有些账容易算,比如某条产线减少了多少工人。有些账却不那么容易算,例如工业软件作为一个使能要素,企业离不开工业软件,却难以计算出它究竟为企业直接或间接节省了多少成本,赚了多少钱。如果选型、实施和应用不到位,更是常常用不起来,业务部门牢骚满腹。长此以往,制造企业更加重硬轻软,最后停留在简单地做一点局部的自动化改善。
第六,数据采集与设备联网,迈不过去的坎。企业要真正实现智能制造,必须进行生产、质量、设备状态和能耗等数据的自动采集,实现生产设备(机床、机器人)、检测设备、物流设备(AGV、立库、叉车等),以及移动终端的联网,没有这个基础,智能制造就是无源之水。但是,现阶段很多制造企业还停留在单机自动化阶段,甚至一些知名企业的生产线也未联网,没有基础的设备联网,何谈工业互联网?
第七,基础数据和管理基础。无论是推进企业信息化、两化融合,还是进一步实现数字化转型,推进智能制造,基础数据的规范性和准确性都是必要条件。很多企业在实施ERP,或者ERP升级换型的过程中,花费时间最多的就是基础数据的整理。企业管理的规范性、业务流程的清晰,也是企业推进智能制造的“敲门砖”。但现实的情况是,一些企业的基础数据还没有理顺,却在大谈“工业大数据”。这种舍本逐末的做法,注定是难以取得实效的。
「2 智能制造推进的5项基本原则」
随着我国劳动力成本迅速增长,节能减排的要求越来越高,市场竞争白热化,客户需求日益个性化,制造企业面临着越来越大的转型压力。在这种背景下,智能制造成为广大制造企业关注的热点。尤其是在车间的智能化改造方面,很多大中型制造企业开展了相关实践,还有众多企业在跃跃欲试。增加智能装备、建立智能产线、推进智能物流,减少人工,成为很多制造企业的共同选择。
智能制造势不可挡,但智能制造只是手段,不是目的。制造企业应当明确推进智能制造的目标,积极学习各种智能制造新兴技术,探讨应用各种智能制造技术的必要性、紧迫性与可行性,具体推进智能制造技术的应用必须做好需求分析与投入产出分析,明确总体拥有成本,根据自己的盈利水平确定合理的投资预算。千万不能为了智能化而智能化,为了争取政府项目而盲目大干快上智能制造项目,以免在老的信息孤岛问题、基础数据不准确的问题依然存在的情况下,又形成新的智能孤岛,甚至形成“仅供参观”的花架子。
因此,制造企业推进智能制造,需要把握以下5项基本原则:
原则1正确理解智能制造。智能制造中的“智能”还处于Smart阶段,智能制造(Smart manufacturing)系统具有数据采集、数据处理和数据分析的能力,能够实现闭环反馈。智能制造的未来趋势是实现“Intelligent”,实现自主学习、自主决策和优化提升。智能制造融合了信息技术、先进制造技术、自动化技术和智能化技术。智能制造中的“制造”指的是广义的制造,并不仅仅包括生产制造环节的智能化,而是包括制造业价值链各个环节的智能化。企业信息化和工业软件的深化应用,是推进智能制造的基础和前提条件。
原则2正确理解和应用智能制造使能技术。智能制造使能技术主要包括:物联网、增材制造(3D打印,包含设备、材料、工艺)、云计算、电子商务、电子数据交换(EDI)、PLC、DCS、自动识别技术(RFID、条码、机器视觉)、数控系统、大数据分析(包括工业大数据)、 虚拟现实/增强现实、Digital twin(数字孪生,包括产品、设备、车间)、工业安全、工业互联网、传感器、云制造和信息集成(EAI、ESB)等技术。需要明确的是,部分技术还处于发展的初期阶段,制造企业需要根据自身的产品特点、生产模式和运营模式来综合考虑应用方式。
原则3必须理解智能化与自动化的本质区别。那些将机器人应用和无人工厂说成是工业40的说法是错误的。企业在建设智能工厂时,要整体考虑智能装备的应用、生产线和装配线的数据采集方式、设备布局和车间物流优化、在制品在工序之间的转运方式、生产工艺的改进与优化、材料的创新等,而不仅仅是某些工位的“机器换人”。智能化生产线能够实现柔性的自动化,快速切换生产多种产品,或者可以混线生产多种产品,能够实现生产数据、质量数据的自动采集,并实现自动化系统与质量分析系统、MES系统的信息集成。
原则4必须做好整体规划,选择适合企业自身特点的实施方案,有效规避风险。推进智能制造需要解决更加复杂的、纵横交错的信息集成问题,例如IT系统与自动化系统的信息集成、供应链的数据交换;推进智能制造需要处理来源多样的异构数据,包括各种来自设备、产品、社交网络和信息系统的海量数据,需要确保基础数据的准确性;推进智能制造需要企业的IT部门、自动化部门、精益推进部门和业务部门,甚至供应链合作伙伴之间的通力合作。因此,制造企业必须充分认识到推进智能制造的复杂性、艰巨性和长期性。制造企业应当做好相关技术的培训,选择有实战经验的智能制造咨询服务机构,共同规划推进智能制造的蓝图。在整体规划的指导下,选择对于企业最有可能迅速见效的突破口优先实施。比如,推进基于物联网的预测性维护服务,促进企业已销售的产品的配件销售,提高客户服务满意度;或者通过实现生产线的智能化,提高设备的整体绩效和产品合格率;通过建立企业级BOM平台,实现产品的在线定制等。
原则5企业需要建立自己的专业队伍,并选择长期的战略合作伙伴。推进信息化是个系统工程,推进信息化与工业化深度融合是一个更大的系统工程,而推进智能制造更是一个非常复杂的系统工程,涉及到诸多工业软件的集成应用,涉及到智能装备应用、设备联网、数据采集、数据分析和业务流程优化,并且需要与推进精益管理结合起来推进,因此,制造企业需要建立自身的专业队伍,融合信息化、自动化和管理人才,并选择若干长期的战略合作伙伴,包括咨询服务机构、智能制造的整体集成商、解决方案提供商和服务商等。制造企业在推进智能制造项目时,必须注意选择在企业所在行业具有实施和服务经验,产品具有开放性和可扩展性,具有本地化服务能力的解决方案提供商,选择具有良好的沟通能力、项目管理能力和丰富行业经验的项目经理。在推进智能工厂项目时,尤其需要考虑解决方案提供商是否具备软件、硬件和自动化的综合实力。
总之,推进智能制造,既要积极布局前沿技术的应用,又要夯实基础,务实推进。纵观中国制造业推进信息技术应用30多年的历程,经历了一个又一个的“工程”,从“会计电算化”、“甩图板”、CIMS工程、“两甩(甩图纸、甩账表)”到制造业信息化工程;产生了一次又一次的“热潮”,从财务软件、CAD、ERP、ASP、云计算、电子商务等,既有政府的积极推进,也有国内外主流厂商的推波助澜。不少制造企业在条件还不具备、对新兴技术认识还不清晰的情况下,就盲目上马应用一些技术尚不成熟的信息化单元系统,实施与应用也不到位,最终形成了很多信息化孤岛,没有达到预期目标,甚至多次推倒重来。因此,不论市场上有哪些“热词”(buzz word)或者热潮,制造企业都不能再盲目跟风,而是应当保持冷静与理智,以免事与愿违。企业需要在提升基础管理水平的基础上循序渐进,积极、稳妥地推进智能制造,从而真正取得实效。
「3 智能制造推进的策略」
首先,推进智能制造的核心目的是帮助企业通过实现降本增效、节能降耗、提高产品质量、提升产品附加值、缩短产品上市周期、满足客户个性化需求,以及向服务要效益等途径,提升企业的核心竞争力和盈利能力。推进智能制造绝不能搞面子工程。
第二,必须对智能制造有正确的理解和认识。智能制造覆盖企业全价值链,是一个极其复杂的系统工程,不要期望“毕其功于一役”;推进智能制造需要规划、IT、自动化、精益等部门通力合作;不同行业的企业推进智能制造差异很大。推进智能制造,需要引入中立、专业的服务机构,开展多层次、多种形式的培训、考察、交流与学习,让企业上下树立对智能制造的正确认识。此外,需要强调的是,小批量、多品种的企业,不要盲目推进无人工厂;个性化定制和无人工厂是鱼和熊掌不可兼得;不能盲目推进机器换人。
第三,大处着眼,小处着手。企业要想推进智能制造取得实效,应当参照e-works智能制造金字塔的相关内容,通过智能制造现状评估、业务流程和工艺流程梳理、需求调研与诊断、整体规划及落地实施5个步骤,画出清晰的智能制造路线图,然后根据路线图和智能制造整体规划,稳步推进具体的项目,注重对每个智能制造项目明确其KPI指标,在测度关键绩效指标的基础上,评估是否达到预期目标。智能制造要取得实效,需要清晰的思路、明确的目标、高层的引领、专业的团队和高度的执行力。

图2 智能制造总体框架范例
第四,紧密跟踪先进制造技术的发展前沿。近年来,制造业的新材料、新技术、新工艺层出不穷,金属增材制造技术不仅改变了复杂产品的制造方式,还改变了产品结构,也彻底打破了可制造性的桎梏,催生了创成设计等新的设计模式,从计算机辅助人设计,演化为人辅助计算机设计。碳纤维复合材料的广泛应用催生了全新的制造工艺和制造装备。奥迪A8采用了铝制车身,车身焊接不能再使用点焊,取而代之的是铆焊、摩擦焊、激光焊等新工艺。材料和工艺的改进,往往会对产品的性能,例如抗腐蚀、耐久性带来巨大的提升。精密测量技术也在迅速发展,由接触式测量发展到非接触式测量,由离线检测演化为在线检测,由事后检测演化为边测量边加工,从而帮助制造企业提升产品质量。
第五,积极稳妥地推进数字化和智能化技术的应用。当前,人工智能技术的发展如火如荼,必将在制造业不断得到应用,尤其是在无人驾驶汽车、质量检测与优化、设备故障诊断和预测等领域。现在已经出现了Google的Tensorflow等开源的人工智能引擎可以应用。此外,虚拟现实(VR)、增强现实(AR)、混合现实(MR)等可视化技术,在制造业也有很好的应用场景,例如设备 *** 作培训和设备维修维护等。爱立信工厂应用增强现实技术进行电路板的检测,蒂森克虏伯电梯利用MR技术提高电梯维护的效率。Cobot(协作机器人,单臂和双臂)在装配、拧螺丝、涂胶等很多工序可以进行应用,机器人与视觉传感器、力觉传感器的集成应用能够大大提高机器人动作的准确性和灵活性。

图3 爱立信工厂利用AR技术辅助进行电路板质量检测
第六,选择真正靠谱的合作伙伴。智能制造系统架构十分复杂,也非常个性化,相关技术在不断演进,企业本身也是动态变化,智能制造评估体系和规划方法论也还处于不断完善的过程中,智能制造的推进是一个长期的过程。因此,企业推进智能制造需要寻找专业的合作伙伴,从培训、现状评估、规划,到具体的数字化工厂仿真、产线设计,到真正实现工控网络的建设,并建立工控安全体系,实现IT与OT系统的集成。
随着全球信息化的浪潮,信息化产业不断发展、延伸,已经深入了众多的企业及个人,SOA系统架构的出现,将给信息化带来一场新的革命。
纵观信息化建设与应用的历程,尽管出现过XML(标准通用标记语言的子集)、Unicode、UML等众多信息标准,但是许多异构系统之间的数据源仍然使用各自独立的数据格式、元数据以及元模型,这是信息产品提供商一直以来形成的习惯。各个相对独立的源数据集成一起,往往通过构建一定的数据获取与计算程序来实现,这样的做法需要花费大量工作。信息孤岛大量存在的事实,使信息化建设的ROI(投资回报率)大大降低,ETL成为集中这些异构数据的有效工具。ETL常用于从源系统中提取数据,将数据转换为与目标系统相兼容的格式,然后将其装载到目标系统中。数据经过获取、转换、装载后,要产生应用价值,还需另外的数据展现工具予以实现,如此复杂的数据应用过程,必定产生高昂的应用成本。
结构化的数据管理尚可通过以上方法,予以实现其集成应用。在非结构化的内容方面,这些具有挑战性的问题令人生畏。内容管理的应用方案基于不同的信息化应用系统,而且大部分是纵向的以组织部门为界限的。在内容管理市场中,经常使用来自不同厂商的产品来提供这些解决方案。即使是同一个厂商的产品,相互之间的功能也是经常重叠,并且无法集成。
随着信息化建设的深入,不同应用系统之间的功能界限已趋于模糊。同时企业资源计划系统和协同商务系统,又需要商业智能的分析展现数据提供用户 *** 作依据。
在激烈竞争且多变的市场环境下,企业的管理模式很难固化,应用传统的信息化软件,当企业要做出一些改动时需要面对巨大的挑战。
SOA系统架构的出现,信息化变革
微软大中华区服务部总经理辛儿伦介绍说,从上世纪60年代应用于主机的大型主机系统,到80年代应用于PC的CS架构,一直到90年度互联网的出现,系统越来越朝小型化和分布式发展。2000年WebService出现后,SOA被誉为下一代Web服务的基础框架,已经成为计算机信息领域的一个新的发展方向。
SOA的出现给传统的信息化产业带来新的概念,不再是各自独立的架构形式,能够轻松的互相联系组合共享信息。
可复用以往的信息化软件。基于SOA的协同软件提供了应用集成功能,能够将ERP、CRM、HR等异构系统的数据集成。
松散耦合方式,只要充分了解业务的进程,就可以不用编写一行代码,通过流程图实现一套我们自己的信息系统。就像已经给你准备好了砖瓦和水泥,只需要想好盖什么样的房子就可以轻松的盖起。加快开发速度,并且减少了开发和维护的费用。软件将所有的管理提炼成表单和流程,以记录管理的内容,指定过程的流转方向。
更简便的信息和数据集成。信息集成功能可以将散落在广域网和局域网上的文档、目录、网页轻松集成,加强了信息的协同相关性。同时,复杂、成本高昂的数据集成,也变成了可以简单且低成本实现的参数设定。创建了完全集成的信息化应用新领域。
在具体的功能实现上,SOA协同软件所实现的功能包括了知识管理、流程管理、人事管理、客户管理、项目管理、应用集成等,从部门角度看涉及了行政、后勤、营销、物流、生产等。从应用思想上看,SOA协同软件中的信息管理功能,全面兼顾了贯穿整个企业组织的信息化软硬件投入。尽管各种IT技术可以用于不同的用途,但是信息管理并没有任意地将信息分为结构化或者非结构化的部分,因此ERP等结构化管理系统并不是信息化建设的全部;同时,信息管理也没有将信息化解决方案划分为部门的视图,因此仅仅以部分为界限去构建软件应用功能的思想未必是不可撼动的。基于SOA的协同软件与ERP、CRM等传统应用软件相比,关键的不同在于它可以在合适的时间、合适的地点并且有正当理由向需要它提供服务的任何用户提供服务。
骗人的。中国物联网就是一个骗局。里面声称这里有一个中国物联网项目,由于中国在未来物联网的主导地位,国家要创立一个“中国物联网综合数字货币平台”,是真正的国家项目,不必担心上当受骗。这种东西明眼人一看便知道是传销骗局。
一、传销,是指组织者或者经营者发展人员,通过对被发展人员以其直接或者间接发展的人员数量或者销售业绩为依据计算和给付报酬,或者要求被发展人员以交纳一定费用为条件取得加入资格等方式牟取非法利益,扰乱经济秩序,影响社会稳定的行为。
二、下列行为,属于传销行为:
(一)组织者或者经营者通过发展人员,要求被发展人员发展其他人员加入,对发展的人员以其直接或者间接滚动发展的人员数量为依据计算和给付报酬(包括物质奖励和其他经济利益,下同),牟取非法利益的;
(二)组织者或者经营者通过发展人员,要求被发展人员交纳费用或者以认购商品等方式变相交纳费用,取得加入或者发展其他人员加入的资格,牟取非法利益的;
(三)组织者或者经营者通过发展人员,要求被发展人员发展其他人员加入,形成上下线关系,并以下线的销售业绩为依据计算和给付上线报酬,牟取非法利益的。
我们身边的共享单车即应用了物联网技术,《物联网时代》将物联网定义为:“通过基于互联网协议的分布式云端,将所有的东西都互联起来。”其作者马切伊认为,物联网实际上并不是什么新的发明,它以不同的形式以及存在了10年以上的时间。
连接带来了时代的需求的变化,当世界上有十亿网民的时候,Facebook就自然的出现了。
如果你仔细地观察过去25年里的科技企业,你就会发现变化一直在发生。
每隔3-7年,企业就必须对它们进行重塑。那些错过了一次技术转型的公司如果能迎头赶上的话,那么还有可能重新恢复过来。而那些错过了两次技术转型的公司,则有可能已经消失了。如果你有兴趣的话,可以查看一下50年前标准普尔500强公司的名单,如果统计无误的话,截止到2017年,只有19%的企业现在依然存在。
当我们在网络上看着90后“佛系”“中年人”的话题捧腹大笑的时候,其实我们没有看到这背后透露着的真正原因是:90后们生活在“变的太快”的世界里,太多学习工作生活里的问题他的上一辈甚至前一代人都没有遇到过,他们的迷茫那么大,以至于有些人认为:至于以不变应万变才是“正解”。
而如果我们把这件事扩展的更大一些,无论我们的真实年龄如何,我们都注定属于将遭遇革命性变革的一代人。这也正是马切伊克兰兹(Maciej Kranz)将每一个商业领域正经历“革命性变革”的这一代人叫做“物联网一代”的原因。
什么是物联网?
一个相对繁琐的解释是:
物联网是互联网的一个延伸。互联网的终端是计算机(PC、服务器),我们运行的所有程序都是计算机和网络中的数据处理和数据传输,没有涉及任何其他的终端。而未来,所有物和物之间都可以实现互联。物联网能够让互联网连接对象使用嵌入式传感器进行数据收集和交换的网络,汽车,厨房电器,甚至心脏监视器都可以通过物联网连接。随着物联网在未来几年的发展,更多的电子设备将加入物联网的阵营。
而在《物联网时代》中,物联网有一个更为简单明了的定义,它是“通过基于互联网协议的分布式云端,将所有的东西都互联起来。”其作者马切伊·克兰兹是全球物联网专家,思科公司战略创新集团副总裁。在本书中,他基于思科的工作视野和在全球物联网行业一线的长期实践经验,从数十个他参与实施的物联网案例中,总结出4种已经获得验证的、可以快速回报的场景。顺带提一下,思科公司的主营业务就是物联网。
总的来看,物联网的本质还是互联网,只不过终端不再是计算机(PC、服务器),而是嵌入式计算机系统及其配套的传感器。在这个意义上说,物联网是一个很大的概念。如果单从学科上分解来看的话,它涉及到通信,信号处理,计算机视觉,自动化控制,电路系统,信息融合,无线自组织网络,MEMS传感器设计等等。
可以说,这是计算机科技发展的必然结果,为人类服务的计算机呈现出各种形态,如穿戴设备、环境监控设备、虚拟现实设备等等。只要有硬件或产品连上网,发生数据交互,就叫物联网。实际上,大数据概念最早的提出,也是因为物联网的兴起,传感器接入网络之后,大大增加了可以挖掘的数据量,网络上的数据不但包括社交网络这种来自用户的数据,还有了来自物理世界的数据。
物联网发展速度为什么这么慢?
正如马切伊在他的书中提到的那样,物联网实际上并不是什么新的发明,它以不同的形式以及存在了10年以上的时间。
它的本质便是上个世纪学术界开始兴起传感器网络、自组织及多跳网络(wireless sensor network, ad-hoc network, wireless multi-hop network)。RFID在智能物流上的应用只是最为基本的应用场景,当前的研究远比这个更为复杂。但是,受限于应用场景和技术实现的瓶颈,物联网的发展,其实无法像互联网那样爆发。
首先,现阶段的物联网应用基本都是“锦上添花”的东西,需求性并没有那么强,如可穿戴设备和智能家居,这也就是为什么很多智能硬件叫好不叫座的根本性原因;也正是因为这个原因,商业上也不会出现滴滴打车那样的持续性投入,这又反向钳制了这一技术的商业化发展。
其次,物联网技术上还有很多没有突破。最大的技术瓶颈可能在MEMS传感器的性能和无线传感网的设计实现上。
再有,就是目前在应用上还找不到突破。目前比较活的也就是智能硬件,无人机,工业物联网这块。但是离人类和互联网形成的应用需求还无法相比,目前还没出现。
最终,物联网应用的制约因素还是能源,物联网应用场景的扩展一直在等待电池技术的突破。所以,目前来说物联网首先会在那些对能量要求不是很高的方向首先取得突破,比如智能硬件和工业设备上。
总之,物联网的方向毋庸置疑有着广阔的发展前景,但是当前基础研究和相关技术还有待发展,因此看起来发展缓慢,甚至就是停滞,学术和商业界都在等待一个颠覆性应用可以让“物联网”来一次诈尸。
共享单车中的物联网技术
完全可以想象,物联网的技术前景是广阔的。
实际上,2016年底兴起的共享单车就是一个成功的物联网商业化作品。
看似简单的单车使用过程,包括了物联网技术,人联网技术(移动互联网),自动控制技术,GPS全球定位技术等多个技术领域。但是整体的技术实现并不复杂,并没有涉及到什么创新黑科技。
首先,一辆单车需要以下几样设备参与运作:
•单车上面的智能锁(这个是核心关键,包括了GPS定位模块,GPRS通讯模块,主控芯片,电控锁模块等)
•用户手中的手机和APP
•单车提供商的云服务器(平台)
关键的环节在于单车和云服务器之间的通讯,采用的是老旧的GPRS技术。为什么要用这种落后的2G技术呢? 不使用LTE呢?答案很简单: 省钱省电覆盖好。
共享单车是典型的物联网应用场景,也能很好的克服我们之前说的物联网现存的耗能的问题。它对网络的要求并不是大数据量(它只需要很少很小的几条消息),而且它不需要速度很快(几秒钟的时延,完全可以忍受),它需要很低的功耗和很长的待机时间。
早期阶段,共享单车甚至依靠短信和云服务器进行通信,所以等待解锁的时间比较久,大约需要6-10秒。
还有一个小细节,不知道有没有人遇到过。我曾经用过一次支付宝旗下集成的一款市面上不太流行的单车品牌,扫码之后,手机提示我:锁没电了。这是我第一次意识到,原来单车的锁需要电!?
当然,正因为共享单车智能锁有这么多模块,所以它当然要耗电的。
为什么早期的单车骑起来特别累?除了一些材料和工学设计的原因,也是因为:你在充当人肉发电机。后来,为了改善用户体验,开始流行太阳能充电了。所以,越来越多的单车装上了太阳能发电板(如下图)。
经过过去一年半的迭代和升级,现在市面上所有的单车使用体验相比最早的那一批已经有了质的飞跃。
同时,近些年上市的一些空气净化器,穿戴设备以及家庭环境监控设备也已经完成了一代代的自我迭代和进化,在目前的消费场景下,服务着千家万户,这正是物联网技术未来商业化发展的一个缩影。
如何顺势借力风口,成为一名成功的物联网创业者或者职场精英?
BI Intelligence 预计:到 2020 年,地球上将有超过 240 亿的物联网设备,约为人均 4 台,当我们接近这个阶段时,60 亿美元将流入物联网解决方案,包括应用程序开发,设备硬件,系统集成,数据存储等。然而这些投资在 2025 年将产生 13 万亿美元的效益。
然而正如前面所说的,基于一些目前无法攻关的技术难题,它的商业前景也是复杂的,特别是对于创业者而言,这不是一个好消息。创业者大部分都是小公司,无论多么先进的技术,一旦市场成熟,目前的互联网大鳄公司都可以迅速投入数倍于你的资金,在非常短的时间内模仿你,超过你,压垮你。
而且,目前全世界范围内,也已经有多家物联网平台已经初具规模,比如Amazon Web 服务、Microsoft Azure、ThingWorx 物联网平台、IBM 的沃森、思科物联网云连接、Salesforce IoT 云、Oracle 集成云以及 GE Predix。
因此,物联网行业的创业者应该处理好两个问题。
首先,科技行业想突破垄断,对于微软和IBM这样的大企业而言,是技术积累。对于我们这样的个人或小团队而言,最好的方法是缩小目标客户群体,专注于某一个具体的领域或者攻关一项技术去解决某一个具体的问题。主动缩小目标客群的好处就是大企业不容易来抢市场,而你我们相对容易找到目标客户,最终说服他们买你的产品。
其次,以热门概念 *** 作以达到融资目的,而从不关心成本和收入是最错误的做法。
总结来看,就是组建一个相对小型的团队来维护一款小产品或者一个项目,这样可能反而容易成功,比如团队或项目被大公司收购。
如果你只是想成为一个工作体面收入又高的技术工作者和相关从业者,有一条相对明确的职业发展方向可以借鉴:学Java,去一家当地比较有名的计算机类企业应聘;取得一定成绩后,跳槽至国内一线物联网公司;3-5年后,有机会跳槽去国际一线企业在华公司应聘,如前面所说的这几个大型的物联网平台。如果在继续在里面服务几年,等到物联网技术真正实现商业化爆炸的那一天,你绝对已经可以斩钉截铁向别人介绍说:你好,我是物联网行业的资深行业顾问!就像我们前文提到的《物联网时代》作者马切伊先生一样。
就算不完全复制这条路,普通人想要搭上物联网这班车也不是没有可能的。毕竟,物联网的范围其实极其广泛。无论是大数据分析师、GPS定位还是井下探测,都可以算是物联网的一部分。只不过,程序猿是物联网现阶段发展时期,需求最大平均工资最高的工种而已。
以上由物联传媒提供,如有侵权联系删除
本人从事物联网专业多年,分享下自己的认识,希望能给你一些帮助。物联网其实是互联网的一个延伸,互联网的终端是计算机(PC、服务器),我们运行的所有程序,无非都是计算机和网络中的数据处理和数据传输,除了计算机外,没有涉及任何其他的终端(硬件)。
物联网的本质还是互联网,只不过终端不再是计算机(PC、服务器),而是嵌入式计算机系统及其配套的传感器。这是计算机科技发展的必然结果,为人类服务的计算机呈现出各种形态,如穿戴设备、环境监控设备、虚拟现实设备等等。只要有硬件或产品连上网,发生数据交互,就叫物联网。
不过物联网的概念目前被炒到过热。鄙人大概十年前开始学习嵌入式,那个时候还没物联网、智能硬件这么高大上的字眼。相信很多前辈那时跟我一样,学的是单片机编程,大家都用“单片机”来概括这个行业。大概2012年左右,很多热钱从房市涌出,投入资本市场。正是这个时候,一大波高大上词汇来袭。服务器技术叫“云”,单片机叫“智能硬件”,网络单片机应用叫“物联网”,车载单片机应用叫“车联网”
不过受限于技术上的瓶颈,物联网的发展,其实无法像当初互联网那样爆发。或者换通俗一点的说法,大家有没有发现很多物联网的应用,其实是锦上添花的东西,需求性并没有那么强,这也就是为什么很多智能硬件卖得并不是很好的根本原因;正是因为需求性原因,所以商业上也不会出现滴滴打车那样的持续性投入,又一定钳制了技术的进一步发展。
到今年,这一波的投资热潮冷却了很多,但是在这波浪潮里,我们的社会还是发生了很多变化。首先是关注物联网的人越来越多,从业者也越来越多。而且很多大学也开设了相关课程,政府也出台了行业鼓励政策。前面我们说过物联网的概念被炒得有点过热,所以在物联网的大群体里,有两类人最为迷茫。其一就是专注物联网的创业者,其二就是物联网专业的学生。鄙人也曾经属于第一类人。
物联网的技术前景是广阔的,近些年上市的一些空气净化器产品,穿戴设备,家庭环境监控设备,在过去是不曾有的,在目前的消费背景下,正服务着大众。未来还会有更多的新式设备出现,这些正是物联网技术发展的必然结果,所以投身于物联网的技术研发,是很有前景的一件事。
然而物联网的商业前景却是复杂的,特别是对于创业者而言,这不是一个好消息。既然创业,目的肯定是赚钱,然而放眼人类社会,最赚钱的事情,其实归类起来就那么几样。首先是资源、再就是获取资源的工具,以及信息。每个企业,想要活得好,目标只有一个,就是垄断。然而社会上的大部分资源,都是垄断在大企业手里,小企业参与的,往往是跟民生有关的门槛低的行业,竞争激烈,赚钱辛苦。回到计算机行业,虽然计算机行业开放程度很高,然而垄断的存在并不亚于其他行业。英特尔、ARM等公司,基本垄断了处理器行业。微软、Google(Android)、苹果垄断了 *** 作系统。物联网是新兴市场,虽然目前容量不大,但各家各户都盯着,对于创业者而言,无法创造垄断,很难存活。创业者大部分都是小公司,你无论多么牛逼的技术,一旦有市场,大公司都可以迅速投入数倍于你的资金,在非常短的时间内模仿你,超过你,压垮你。你是小公司,宣传推广,也不可能投入像大公司那样的资金及影响力,所以产品再好,也不一定卖得好,这是每个技术型创业者,不得不面对的事实。
正是因为上述压力,很多创业者非常迷茫。本人过去四年间一直从事物联网行业,因此结识了很多同行,其中大部分都是创业者。这些创业者非常勤奋,对自己的想法充满热情,也往往敢于坚持。然而这些并没有什么用,大部分创业者,都没有走到今天,因为投资人的钱总是会烧完的。
我觉得想走向成功,物联网行业的创业者应该处理好两个问题。首先,应该认识到,计算机行业想突破垄断,对于大企业而言,是技术积累。然而对于个人或小团队而言,唯一的方法是缩小用户群体。就是我们应该专注于一个领域一项技术去解决一个问题。如果你说你的客户是大众每一个人,那你的东西基本一个都卖不出去。但是如果你的客户是“捷达轿车车主”+“装过电子导航系统”,那你的东西会比较好卖。缩小用户群体的好处,是大企业不会来跟你抢饭吃,而你又非常容易精准的找到你的客户并说服他们买你的东西。其次,个人或小团队,不应该有任何一刻在亏本,否则你终会难以坚持。最好的状态,应该是大家都有正职工作(收入),但是比较闲,一起来维护一款小产品,这样的情形,往往容易成功(最后团队或项目被大公司收购,实现财务自由,或职位上升)。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)